
 1

1

LOGIC DEVICES

Unit Structure

1.1 Introduction

1.2 Tristate devices

1.3 Buffers

1.4 Encoder

1.5 Decoder

1.6 Latches

1.7 Summary

1.8 Review Questions

1.9 Reference

1.0 OBJECTIVES

After studying this chapter you should be able to
 Understand the working of tri state devices
 Explain the use of buffer in electronics
 Describe the use of encoder and decoder in 8085
 Understand the working of Latch

1.1 INTRODUCTION

The chapter reviews logic theory of encoder and decoder. It

discusses the working of tristate devices and latch. These logic
devices play an important role in 8085 microprocessor. In order to
separate the low order address bus and data bus, latch IC is used.

1.2 TRI-STATE DEVICES

Tri-state logic devices have three states:

1) Logic 1 or Low
2) Logic 0 or High
3) High impedance

 A tri-state logic device has a extra input line called Enable.
When this line is active (Enabled), a tri-state device functions in the
same way as ordinary logic devices. When this line is not
active(disabled), the logic device goes into a high impedance state,

 2

as if it is disconnected from the system and practically no current is
drawn from the system.

1.3 BUFFER

A Digital Buffer is a single input device that does not invert

or perform any type of logical operation on its input signal. In other
words, the logic level of the output is same as that of the input. The
buffer is a logic circuit that amplifies the current or power. The
buffer is used primarily to increase the driving capability of a logic
circuit. It is also known as driver.

Symbol Truth Table

A Tri-state Buffer

A Q

0 0

1 1

Boolean Expression Q = A Read as A gives Q

1.3.1 Tri-state Buffer

A Tri-state Buffer can be thought of as an input controlled
switch which has an output that can be electronically turned "ON"
or "OFF" by means of an external "Enable" signal input. This
Enable signal can be either a logic "0" or a logic "1" type signal.
When Enable line is low (logic „0‟), the circuit functions as a buffer.
When Enable line is high (logic „1‟), its output produces an open
circuit condition that is neither "High" nor "low", but instead gives an
output state of very high impedance, high-Z, or more commonly
Hi-Z.

Then this type of device has two logic state inputs, "0" or a "1"

but can produce three different output states, "0", "1" or "Hi-Z"
which is why it is called a "3-state" device.

There are two different types of Tri-state Buffer, one whose

output is controlled by an "Active-HIGH" Enable signal and the
other which is controlled by an "Active-LOW" Enable signal, as
shown below

1.3.1 Active "HIGH" Tri-state Buffer

Symbol Truth Table

 3

Tri-state Buffer

Enable A Q

1 0 0

1 1 1

0 0 Hi-Z

0 1 Hi-Z

Read as Output = Input if Enable is equal to "1"

An Active-high Tri-state Buffer is activated when a logic

level "1" is applied to its "enable" control line and the data passes
through from its input to its output. When the enable control line is
at logic level "0", the buffer output is disabled and a high
impedance condition, Hi-Z is present on the output.

1.3.2 Active "LOW" Tri-state Buffer

Symbol Truth Table

Tri-state Buffer

Enab
le

A Q

0 0 0

0 1 1

1 0 Hi-Z

1 1 Hi-Z

Read as Output = Input if Enable is NOT equal to "1"

An Active-low Tri-state Buffer is the opposite to the above,

and is activated when a logic level "0" is applied to its "enable"
control line. The data passes through from its input to its output.
When the enable control line is at logic level "1", the buffer output is
disabled and a high impedance condition, Hi-Z is present on the
output.

1.4 ENCODER

The encoder is a logic circuit that provides the appropriate

code (binary, BCD, etc.) as output for each input signal.

1.4.1 Binary Encoder

 A binary encoder, is a multi-input combinational logic
circuit that converts the logic level "1" data at its inputs into an
equivalent binary code at its output. Generally, digital encoders
produce outputs of 2-bit, 3-bit or 4-bit codes depending upon the
number of data input lines. An "n-bit" binary encoder has 2n input
lines and n-bit output lines with common types that include 4-to-2,
8-to-3 and 16-to-4 line configurations. The output lines of a digital

 4

encoder generate the binary equivalent of the input line whose
value is equal to "1" and are available to encode either a decimal or
hexadecimal input pattern to typically a binary or B.C.D. output
code.

1.4.24-to-2 Bit Binary Encoder

One of the main disadvantages of standard digital encoders
is that they can generate the wrong output code when there is more
than one input present at logic level "1". For example, if we make
inputs D1 and D2 HIGH at logic "1" at the same time, the resulting
output is neither at "01" or at "10" but will be at "11" which is an
output binary number that is different to the actual input present.
Also, an output code of all logic "0"s can be generated when all of
its inputs are at "0" or when input D0 is equal to one.

One simple way to overcome this problem is to "Prioritise"

the level of each input pin and if there was more than one input at
logic level "1" the actual output code would only correspond to the
input with the highest designated priority. Then this type of digital
encoder is known commonly as a Priority Encoder or P-encoder
for short.

1.4.2Priority Encoder

The Priority Encoder solves the problems mentioned above
by allocating a priority level to each input. The priority encoders
output corresponds to the currently active input which has the
highest priority. So when an input with a higher priority is present,
all other inputs with a lower priority will be ignored. The priority
encoder comes in many different forms with an example of an 8-
input priority encoder along with its truth table shown below.

8-to-3 Bit Priority Encoder

 5

Priority encoders are available in standard IC form and the

TTL 74LS148 is an 8-to-3 bit priority encoder which has eight active
LOW (logic "0") inputs and provides a 3-bit code of the highest
ranked input at its output. Priority encoders output the highest order
input first for example, if input lines "D2", "D3" and "D5" are applied
simultaneously the output code would be for input "D5" ("101") as
this has the highest order out of the 3 inputs. Once input "D5" had
been reMOVed the next highest output code would be for input
"D3" ("011"), and so on.

1.5 DECODER

A Decoder is the exact opposite to that of an "Encoder". It is

basically, a combinational type logic circuit that converts the binary
code data at its input into an equivalent decimal code at its output.
Binary Decoders have inputs of 2-bit, 3-bit or 4-bit codes
depending upon the number of data input lines, and a n-bit decoder
has 2n output lines. Therefore, if it receives n inputs (usually
grouped as a binary or Boolean number) it activates one and only
one of its 2n outputs based on that input with all other outputs
deactivated. A decoders output code normally has more bits than
its input code and practical binary decoder circuits include, 2-to-4,
3-to-8 and 4-to-16 line configurations.

A binary decoder converts coded inputs into coded outputs,

where the input and output codes are different and decoders are
available to "decode" either a Binary or BCD (8421 code) input
pattern to typically a Decimal output code. An example of a 2-to-4
line decoder along with its truth table is given below.

 6

1.5.1 2-to-4 Binary Decoder

In this simple example of a 2-to-4 line binary decoder, the

binary inputs A and B determine which output line from D0 to D3 is
"HIGH" at logic level "1" while the remaining outputs are held
"LOW" at logic "0" so only one output can be active (HIGH) at any
one time. Therefore, whichever output line is "HIGH" identifies the
binary code present at the input, in other words it "de-codes" the
binary input and these types of binary decoders are commonly
used as Address Decoders in microprocessor memory
applications.

Some binary decoders have an additional input labelled

"Enable" that controls the outputs from the device. This allows the
decoders outputs to be turned "ON" or "OFF".The logic diagram of
the basic decoder is identical to that of the basic demultiplexer.
Therefore, one can say that a demultiplexer is a decoder with an
additional data line that is used to enable the decoder. An
alternative way of looking at the decoder circuit is to regard inputs
A, B and C as address signals. Each combination of A, B or C
defines a unique address which can access a location having that
address.

1.6 LATCHES

The D flip-flop:
 The D flip-flop is by far the most important of the clocked
flip-flops as it ensures that inputs S and R are never equal to one at
the same time. D-type flip-flops are constructed from a gated SR flip-

flop with an inverter added between the S and the R inputs to allow

 7

for a single D (data) input. This single data input D is used in place
of the "set" signal, and the inverter is used to generate the
complementary "reset" input thereby making a level-sensitive D-
type flip-flop from a level-sensitive RS-latch as now S = D and R = not

D as shown.

D flip-flop Circuit

A simple SR flip-flop requires two inputs, one to "SET" the output
and one to "RESET" the output. By connecting NOT gate to the SR
flip-flop one can "SET" and "RESET" the flip-flop using just one
input as now the two input signals are complements of each other.
This complement avoids „forbidden state‟ in the SR latch when both
inputs are LOW, since that state is no longer possible.

Thus the single input is called the "DATA" input. If this data

input is HIGH the flip-flop would be "SET" and when it is LOW the
flip-flop would be "RESET". However, this would be rather pointless
since the flip-flop's output would always change on every data
input. To avoid this an additional input called the "CLOCK" or
"ENABLE" input is used to isolate the data input from the flip-flop
after the desired data has been stored. The effect is that D is only
copied to the output Q when the clock is active. This forms the basis
of a D flip-flop.

The D flip-flop will store and output whatever logic level is

applied to its data terminal so long as the clock input is HIGH. Once
the clock input goes LOW the "set" and "reset" inputs of the flip-flop
are both held at logic level "1" so it will not change state and store
whatever data was present on its output before the clock transition
occurred. In other words the output is "latched" at either logic "0" or
logic "1".

 8

Truth Table for the D Flip-flop

Clk D Q Q Description

↓ » 0 X Q Q
Memory
no change

↑ » 1 0 0 1 Reset Q » 0

↑ » 1 1 1 0 Set Q » 1

Note: ↓ and ↑ indicates direction of clock pulse as it is assumed D

flip-flops are edge triggered

1.7 SUMMARY

 A tri-state logic device has a extra input line called Enable.

When this line is active (Enabled), a tri-state device functions
in the same way as ordinary logic devices. When this line is
not active(disabled), the logic device goes into a high
impedance state, as if it is disconnected from the system
and practically no current is drawn from the system.

 A Digital Buffer is a single input device in which the logic
level of the output is same as that of the input. The buffer is
a logic circuit that amplifies the current or power. The buffer
is used primarily to increase the driving capability of a logic
circuit.

 The Digital Encoder is a combinational circuit that
generates a specific code at its outputs such as binary or
BCD in response to one or more active inputs. There are two
main types of digital encoder. The Binary Encoder and the
Priority Encoder.

 The Binary Encoder converts one of 2n inputs into an n-bit
output. Then a binary encoder has fewer output bits than the
input code. Binary encoders are useful for compressing data
and can be constructed from simple AND or OR gates.

 The Priority Encoder is another type of combinational
circuit similar to a binary encoder, except that it generates an
output code based on the highest prioritised input.

 A Decoder is a combinational type logic circuit that converts
the binary code data at its input into an equivalent decimal
code at its output.

 There are two different types of Tri-state Buffer, one whose
output is controlled by an "Active-HIGH" Enable signal and
the other which is controlled by an "Active-LOW" Enable
signal.

 9

1.8 REVIEW QUESTIONS

 1. What do you mean by tri-state devices?
 2. With the help of a neat symbol explain tri-state buffer.
 3. State function of buffer.
 4. Explain different types of encoder.
 5. With the help of neat block diagram explain 4 to 2 encoder.
 6. What do you mean by priority encoder?
 7. With the help of neat block diagram explain 8 to 3 encoder.
 8. Explain decoder in detail.
 9. With the help of neat block diagram explain 3 to 8 decoder.
 10. Explain the working of D flipflop.

1.9 REFERENCE

 Microprocessor Architecture, Programming, and Applications
With the 8085 by Ramesh Gaonkar, Publisher: Prentice Hall

 Digital Principles and application by Malvino and Leach,

Publisher: McGraw-Hill



 10

2

MEMORY

Unit Structure

1.1 Introduction

1.2 Memory

1.3 Random Access Memory (RAM)

1.4 Read Only Memory (ROM)

1.5 Nonvolatile RAM (NVRAM)

1.6 Memory Interfacing

1.7 Summary

1.8 Review Questions

1.9 Reference

2.0 OBJECTIVES

After studying this chapter you should be able to
 Understand the different types of memory used in 8085
 Distinguish between SRAM & DRAM
 Understand different types ROM
 Understand the different technique of memory interfacing

1.6 INTRODUCTION

Many types of memory devices are available for use in

modern computer systems. You must be aware of the differences
between them andunderstand how to use each type effectively. As
you are reading, try to keep in mind that thedevelopment of these
devices took several decades and that there are significant
physicaldifferences in the underlying hardware. The names of the
memory types frequently reflect the
historical nature of the development process and are often more
confusing than insightful.

1.2 MEMORY

Memory is the storage device which can be used to store

monitor program, users program or users data.So memory is an
important component of the microprocessor based system, which

 11

will allow you to store program and data.The memory consists of
the thousands of memory cells arranged to store data.Each
memory cell is capable of storing 1 bit of the data.Hence, to use
memory to store programs or data of user or system, memory must
be interfaced with microprocessor properly, so that it can be
accessed while reading or writing data or program from/to it .In the
same way, input and output devices are also required to read or
write data out from the microprocessor using input device such as
keyboard or output device using console.
So, these devices must be interface properly with the
microprocessor so that user can read data from input device and
write data to the output device

1.3 RANDOM ACCESS MEMORY (RAM)

Random accessmeans that the stored data can be accessed

in any order, which is in contrast to the morerestricted access
provided by other memory systems, such as tape and disk drive.
Theaccess time to any piece of data stored on in RAM is essentially
the same.

RAM is normally used in computer systems for main memory

or primary storage. This iswhere running programs and the data
they use are stored. Moving data from primarystorage to the
processor requires only a few cycles, although retrieving data from
a harddrive can take considerable longer. For this reason, modern
operating systems runprimarily in RAM, and as they load and run
additional applications, they move theseprograms and their data
into RAM for faster processing.

RAM can be categorized as volatile or non-volatile. Volatile

means that all data is lostwhen the chip is powered down. Most
computers incorporate two types of volatile RAM: static and
dynamic. Althoughboth types require constant electrical current to
function, they have some importantdifferences.

1.3.1 Dynamic RAM (DRAM)

Dynamic RAM is less expensive, and therefore it is the most
widely used.

 When a computer is said to have 512 megabytes or one
gigabyte of RAM, the specification refers to dynamic RAM (DRAM).
DRAM stores each bit of information in a separate capacitor on the
integrated circuit. The DRAM chip requires only one transistor and
one capacitor for each bit of storage. This makes it both cheap and
space efficient. One disadvantage with using capacitors for storage
is that they gradually dissipate their charge, so the charge must be
refreshed regularly (current specifications are for there fresh to

 12

occur every 64 milliseconds or less). This refresh requirement is
what makesthis technology dynamic.

1.3.2 DRAM controller

The DRAM controller is an extra piece of hardwareplaced
between the processor and the memory chips. Its main purpose is
to performthe refresh operations required to keep your data alive in
the DRAM.

Almost all DRAM controllers require a short initialization

sequence that consists ofone or more setup commands. The setup
commands tell the controller about the hardware interface to the
DRAM and how frequently the data there must berefreshed. If the
DRAM in your system does not appear to be workingproperly, it
could be that the DRAM controller either is not initialized or has
beeninitialized incorrectly.

1.3.3 Static RAM (SRAM)

Static RAM (SRAM) has the advantage of being faster than
DRAM, although the disadvantage is that it is more expensive.
SRAM is static in the sense that it doesn‟t require constant
electrical refreshes; however, it still requires constant current to
maintainthe voltage differentials. SRAM generally requires less
power than DRAM.

 Each bit in a SRAM chip requires a cell of six transistors,
although DRAM needs only one transistor and one capacitor. This
means that SRAM cannot achieve the storage densities of the
DRAM family. As with DRAM, SRAM chips are mostly large arrays
of these cells of transistors.The two primary applications of SRAM
are embedded use and in computers.

1.4 READ ONLY MEMORY (ROM)

Memories in the ROM family are distinguished by the

methods used to write new data tothem and the number of times
they can be rewritten. Thisclassification reflects the evolution of
ROM devices from hardwired to one-timeprogrammable to
erasable-and-programmable. A common feature across all these
devices istheir ability to retain data and programs forever, even
during a power failure.

There are several types ofread only memory (ROM),
although most are obsolete. These ROMs are called read
onlybecause they cannot be modified by the casual user (and some
types cannot be modifiedat all). ROMs have traditionally been used

 13

in computer systems to store configurationdata, such as bootstrap
or BIOS code, which requires fast access.

1.4.1 Masked ROMs

The very first ROMs were hardwired devices that contained
a preprogrammed set of data orinstructions. The contents of the
ROM had to be specified before chip production, so theactual data
could be used to arrange the transistors inside the chip. Hardwired
memories arestill used, though they are now called "masked
ROMs" to distinguish them from other typesof ROM. The main
advantage of a masked ROM is a low production cost.
Unfortunately, thecost is low only when hundreds of thousands of
copies of the same ROM are required.it was often usedto contain
the startup code (bootstrap) for early microcomputers.

1.4.2 Programmable Read Only Memory (PROM)

One step up from the masked ROM is the PROM
(programmable ROM), which is purchasedin an unprogrammed
state.The process of writing your data to thePROM involves a
special piece of equipment called a device programmer. The
deviceprogrammer writes data to the device one word at a time, by
applying an electrical charge tothe input pins of the chip. Once a
PROM has been programmed in this way, its contents cannever be
changed. If the code or data stored in the PROM must be changed,
the current devicemust be discarded. As a result, PROMs are also
known as one-time programmable (OTP)devices.

ThePROM is a cheaper and more flexible approach than

mask ROM, although each PROMcan still be programmed only
once. PROMs are reliable, permanent, and relatively fast.They are
still in limited use.

1.4.3 Erasable Programmable Read Only Memory (EPROM)

An EPROM (erasable-and-programmable ROM) is
programmed in exactly the same manneras a PROM. However,
EPROMs can be erased and reprogrammed repeatedly. To erase
anEPROM, you simply expose the device to a strong source of
ultraviolet light. (There is a"window" in the top of the device to let
the ultraviolet light reach the silicon.) By doing this,you essentially
reset the entire chip to its initial-unprogrammed-state. EPROM
chips preserve their data for roughly10 to 20 years and allow for an
unlimitednumber of reads. The erasing window is kept covered by a
foil label to prevent erasure byexposure to sunlight.

The most popular use of EPROMs in computer systems was

to storethe BIOS in older PC systems.Though more expensivethan

 14

PROMs, their ability to be reprogrammed makes EPROMs an
essential part of thesoftware development and testing process.

1.4.4 Electronically Erasable Programmable Read Only
Memory (EEPROM)

The electronically erasable programmable read only memory
(EEPROM) has largelysupplanted all other types of ROM in the
current generation of computing devices. Thecapacity of EEPROMs
ranges up to hundreds of kilobits. This is now the
preferredtechnology for storing the BIOS in personal computers.

As the term electronically erasable implies, EEPROMs can

be erased and rewritten,usually by creating a high-voltage pulse on
the chip. This rewriting eventually damagesthe layer of insulating
material on the chip, so the number of writes is limited.
Althoughearly models would fail after 100 write-erase cycles,
current EEPROMs can sustain onemillion write-erases or more.
Any byte within an EEPROM can be erased and rewritten. Once
written, thenew data will remain in the device forever-or at least
until it is electrically erased. Thetradeoff for this improved
functionality is mainly higher cost.

1.4.5 Flash Memory

Flash memory is the most recent advancement in memory
technology. It combines all the bestfeatures of the memory devices
described thus far. Flash memory devices are high density,low
cost, nonvolatile, fast (to read, but not to write), and electrically
reprogrammable.Although flash memory is erased only one blockor
page at a time, it is much less expensive than EEPROM.

Theseadvantages are overwhelming and the use of Flash
memory has increased dramatically inembedded systems as a
direct result. From a software viewpoint, Flash and
EEPROMtechnologies are very similar. The major difference is that
Flash devices can be erased onlyone sector at a time, not byte by
byte. Typical sector sizes are in the range of 256 bytes to
16kilobytes. Despite this disadvantage, Flash is much more popular
than EEPROM and israpidly displacing many of the ROM devices
as well.

1.5 NONVOLATILE RAM (NVRAM)

An NVRAM is usually just anSRAM with a battery backup.

When the power is turned on, the NVRAM operates just likeany
other SRAM. But when the power is turned off, the NVRAM draws
just enough electricalpower from the battery to retain its current
contents. NVRAM is fairly common in embeddedsystems. However,

 15

it is very expensive-even more expensive than SRAM-so its
applicationsare typically limited to the storage of only a few hundred
bytes of system-critical informationthat cannot be stored in any
better way.

1.6 MEMORY INTERFACING

In computer systems, 1K=1024; therefore 1Kbyte memory

chip has 1024 registers with 8 bits each. Similarly, a group of 256
registers is defined as one page and each register is viewed as a
line to write on. This is analogous to a notebooks containing various
pages, with each page having a certain numbers of lines. With this
analogy, 1Kbyte memory as a chip of four pages (1024/256=4) with
each page having 256 registers. With two hex digits, 256 registers
can be numbered from 00H to FFH; 1024 registers can be
numbered from four digits from 0000H to 03FFH. The high order
two digits of 1 K memory are representing 4 pages (00, 01, 02
& 03)

1.6.1 Memory Address

In computer science, a memory address is a unique identifier
for a memory location at which a CPU or other device can store a
piece of data for later retrieval.In modern byte- addressable
computers, each address identifies a single byte of storage.Some
microprocessors were designed to be word-addressable, so that
the typical storage unit was actually larger than a byte.

Each memory chip like RAM, ROM, EPROM, E2PROM and

DRAM have numbers of pins and these pins are used to accept
different kinds of signals.Normally every memory chip has pins for
address, data, control signals and chip select signals.

1.6.2 Address Pins

Address pins are used to accept address from the system
address bus transmitted by the microprocessor.The numbers of
address pins are depending upon size of the memory as shown in
Table below

Number of
Address ines used

Size of memory
 in bytes

1 2

2 4

3 8

4 16

5 32

6 64

 16

7 128

8 256

9 512

10 1024 ≈ 1k

11 2048 ≈ 2k

12 4096 ≈ 4k

13 8192 ≈ 8k

14 16384 ≈ 16k

15 32768 ≈ 32k

16 65536 ≈ 64k

 In case of 8085 microprocessor the address bus is 16 bit
wide; it can address 65,536 locations i.e. 64 Kbytes of memory.

1.6.3 CS (Chip Select) or CE (Chip Enable) Pin

This signal of the memory chip is ACTIVE LOW and acts as
master enable pin for read or write operation.Hence, for every read
or write operation, this signal must be low otherwise no operation
will be performed.

1.6.4 WR (Write Control Signal) Pin

This is an active low input control signal used to write data to
the memory location whose address is available on address lines if
chip select signal is enable.
This signal is available on system control bus and generated by the
microprocessor or other master in the system such as DMA
controller or co-processor.

1.6.5 RD (Read Control Signal) Pin

This is an active low input control signal used to read data
from the memory location whose address is available on address
lines if chip select signal is enable.
This signal is available on system control bus and generated by the
microprocessor or other master in the system such as DMA
controller or co-processor.

1.6.6 Chip Select Logic

Chip select logic can be developed using either combination of
different gates such as AND, NAND, NOT etc. or decoders.

1.6.6.1 Using Logic Gates

Now take an example of interfacing of 2K of RAM with the
microprocessor 8085, the 8085 is an 8 bit microprocessor. Hence
all 8 lines of data bus can be directly connected after de-

 17

multiplexing to D0-D7 of the RAM memory. The eleven (11) address
lines required to access any memory location within 2K memory, so
out of 16 address lines (A0-A15) of 8085 microprocessor, the A0-A10
address lines can be connected directly memory chip. Remaining
address lines A11-A15to generate chip select signal using NAND and
NOT gates depending on the addresses required as shown in
following figure.

Fig 2.1 Chip select using NAND gates

For generation of chip select we are using NAND gate, when input
to NAND gate are all logic 1, then output of NAND gate will be logic
0 and for all other combination the output will be logic 1.
The chip select is active low signal, hence all inputs of the NAND
gates must be logic 1 to generate chip select signal as given below.

A15 A14 A13 A12 A11

1 0 0 0 0

Hence addresses map of the 2K of RAM is given below.

A

15
A

14
A

13
A

12
A

11
A

10
A

9
A

8
A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0
ADDR
ESS

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8000H

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 87FFH

Used for chip
select
Decoder logic

Connected to A – A10 2 K RAM

 18

The interfacing diagram of 2K X 8 RAM is shown in following
figure

Fig. 2.2 Interfacing of 2K X 8 RAM

1.6.6.2 Using Decoder

Consider above example of memory interfacing, where
remaining address lines i.e. A11-A15 can be connected to the
decoder. Now connect A11, A12, A13 to A, B,C inputs of 3:8 decoder
74LS138 respectively, A14 to G2A and G2B enable pins and at last
A15 to G1 pin of 3:8 decoder as shown in following figure.

 19

Fig. 2.3Using decoder

After making the connection as shown above, the address map of
2K RAM will be same as specified above.

Fig. 2.4Interfacing of 2K X 8 RAM using decoder chip select logic

 20

Here, the advantage of using decoder is minimum hardware
is required as compared using NAND gates. When we use NAND
gates, other logical devices are also required as per requirement as
in above examples, NOT gates are used. Hence for numbers of
devices, numbers of NAND and other logical devices are required
to generate chip select signals.

 But when we use decoder like 3:8 (74LS138), we can
generate eight chip select signals using one decoder IC, as it has
eight active low output pins. The complete interfacing diagram
using decoder to generate chip select signals for 2K of RAM is
shown in Fig. 2.4

1.7 SUMMARY

 Most computers incorporate two types of volatile RAM: static
and dynamic.

 DRAM stores each bit of information in a separate capacitor

on the integrated circuit. With using capacitors for storage is
that they gradually dissipate their charge, so the charge
must be refreshed regularly.

 The DRAM controller is an extra piece of hardware placed

between the processor and the memory chips. Its main
purpose is to perform the refresh operations required to keep
your data alive in the DRAM.

 Static RAM (SRAM) has the advantage of being faster than

DRAM, although the disadvantage is that it is more
expensive.

 The process of writing your data to thePROM involves a

special piece of equipment called a device programmer.

 EPROMs can be erased and reprogrammed repeatedly. To

erase anEPROM, you simply expose the device to a strong
source of ultraviolet light.

 EEPROMs can be erased and rewritten,usually by creating a

high-voltage pulse on the chip.

 Flash memory devices are high density,low cost, nonvolatile,

fast (to read, but not to write), and electrically
reprogrammable.

 An NVRAM is usually just anSRAM with a battery backup.

 21

 In case of 8085 microprocessor the address bus is 16 bit
wide; it can address 65,536 locations i.e. 64 Kbytes of
memory.

 Chip select logic can be developed using either combination

of different gates such as AND, NAND, NOT etc. or
decoders.

1.8 REVIEW QUESTIONS

Q.1 Distinguish between SRAM & DRAM.
Q.2 Write a short note on RAM.
Q.3 Explain different types of ROM.
Q.4 Distinguish between EPROM & EEPROM.
Q.5 Write a short note on Flash memory.
Q.6 Explain memory interfacing in 8085.
Q.7 Explain control signalsWR , RD and chip select logic.

1.9 REFERENCE

 Microprocessor Architecture, Programming, and Applications

With the 8085 by Ramesh Gaonkar, Publisher:Prentice Hall

 Programming Embedded Systems in C and C++ by Michael

Barr, Publisher: O'Reilly



 22

3

INTRODUCTION TO 8085
MICROPROCESSOR

Topics Covered:

3.1 Introduction

3.2 Organization of Microprocessor based System

3.3 Features of 8085 Microprocessor

3. 1 INTRODUCTION

 The microprocessor [MPU] is a programmable digital device,
designed with registers, flip-flops and timing elements.

 The microprocessor has a set of instructions, designed
internally, to manipulate data and communicate with
peripherals. This process of data manipulation and
communication is determined by the logic design of the
microprocessor, called architecture.

 The microprocessor can be programmed to perform
functions on given data by selecting necessary instructions
from its set.

 These instructions are given to the microprocessor by writing
them into its memory.

 Writing instructions and data is done through input device
such as keyboard.

 The functions performed by microprocessor can be classified
into following categories:

 Microprocessor – initiated operations.

 Internal operations.

 Peripheral (or eternally initiated) operations.

Microprocessor – Initiated operations and 8085 Bus
organization:

 The MPU performs primarily four operations:

1. Memory Read: Reads data (or instructions) from
memory.

2. Memory Write: Writes data (or instructions) into memory.

 23

3. I/O Read: Accepts data from input devices.

4. I/O Write: Sends data to output devices.

 All these operations are part of communication process
between the MPU and peripheral devices.

 To communicate with peripheral (or memory location) , the
MPU needs to perform the following steps:

Step 1: Identify the peripheral or the memory location (with
its address)

Step 2: Transfer binary information (data and instruction)

Step 3: Provide timing or synchronization signals.

 The 8085 MPU performs these functions using three sets of
communication lines called buses:

 Address bus

 Data bus

 Control bus

Fig. 3.1 The 8085 Bus Structure

Address Bus:

 The address bus is a group of 16-lines generally identified as
A0 to A15.

 The address bus is unidirectional: bits flow in one direction-
from the MPU to peripheral devices.

 The MPU uses address bus to perform the first function:
identifying a peripheral or a memory location.

 24

 In a computer system, a binary number called an address
identifies each peripheral or memory location, and the
address bus is used to carry a 16-bit address.

 The number of address lines of the MPU determines its
capacity to identify different memory locations (on
peripherals).

 The 8085 MPU with 16 address lines capable of addressing
65536 (generally known as 64K) memory locations.

 E.g. Intel 8088 processor has 20 address lines and Pentium
processor has 32 address lines.

Data Bus:

 The data bus is a group of 8 lines used for data flow (the
term data refers to any binary information that may include
an instruction, an address or a number).

 These lines are bi-directional- data flow in both directions
between MPU and memory and peripheral devices.

 The MPU uses data bus to perform second function:
transferring binary information.

 To eight data lines enable the MPU to manipulate 8-bit data
ranging from 00 to FF.

 The largest number that can appear on the data bus is 1111
1111. The 8085 is known as an 8-bit microprocessor.

 Microprocessors such as Intel 8086, Zilog Z8000 and
Motorola 68000 have 16 data lines; thus they are known as
16-bit microprocessor.

 Intel 80386/486/586 are 32-bit microprocessor.

Control Bus:

 The control bus is the various signal lines that carry
synchronization signals.

 The MPU generates specific control signals for every
operation (such as Memory Read or I/O Write) it performs.

 The MPU places the 16-bit address on the address bus.

 The address on the bus is decoded by an external logic
circuit.

 The MPU sends a pulse called Memory Read as the control
signal.

 25

 The pulse activates the memory chip, and the contents of
the memory location are placed on the data bus and brought
inside the microprocessor.

Fig. 3.2 Memory Read Operation

Internal Data Operations and the 8085 Registers:

 The 8085 performs operations on data such as arithmetic,
logical operations, stores data, test for conditions etc.

 To perform these operations MPU requires registers, ALU and

control logic and internal buses.

 Consider the following hex codes of the instructions stored in

memory locations from 2000H to 2005H as follows:

 2000 06 MVI B, 78H
2001 78
2002 3E MVI A, F2H
2003 F2
2004 80 ADD B
2005 76 HLT

 26

Fig. 3.3 8085 Programmable Registers

 When user enters the memory address 2000H. The processor
places the address 2000H in the Program Counter (PC).

1. When processor begins execution it places the address
2000H on the address bus and increment the address in the
PC to 2001 for the next operation. It brings the code 06,
interprets the code, and places the address 2001 H on the
address bus, and then gets byte 78 H and increment the
address in PC to 2002H. The processor repeats the same
process for the next instruction MVI A, F2H.

2. When processor executes the first two instructions, it uses
register B to store 78H and register A to store F2H.

3. When processor executes the instruction ADD B in the ALU
it adds 78H and F2H and result is placed in Accumulator
(78H + F2H = 16AH). It replaces F2H by 6AH in A and sets
Carry flag.

4. In the above addition operation generates the Carry.
Therefore the Carry flag (CY) = 1 is set.

5. The fifth operation deals with concept of stack. The stack
pointer is a 16-bit register used as a memory pointer to
identify the stack, part of R/W memory defined and used by
the processor for temporary storage of data during the
execution.

 27

Peripheral or Externally Initiated Operations:
 External devices (or signals) can initiate the following

operations, for which individual pins on the microprocessor chip
are assigned: Reset, Interrupt, Ready, Hold.

Reset: When an external key activates RESET key, all internal
operations are suspended and the program counter is cleared (it
holds 0000H). Now program execution begins at the zero
memory address.

Interrupt: The microprocessor can be interrupted from the
normal execution of instructions and asked to execute some
other instructions called a service routine. The microprocessor
resumes its operation after completing the service routine.

Ready: The 8085 has a pin called READY. If the signal at this
READY pin is low, the microprocessor enters into a Wait state.
This signal is used primarily to synchronize slower peripherals
with the microprocessor.

Hold: When the HOLD pin is activated by an external signal, the
microprocessor relinquishes control of buses and allows the
external peripherals to use them. HOLD signal is used in Direct
Memory Access (DMA) data transfer.

3.2 ORGANIZATION OF MICROPROCESSOR BASED
SYSTEM

 A microprocessor based system has standard components
like memory, timing and input/output.

 Depending on the application, other components are added

such as digital to analog converter, interval timer, math
coprocessors, interrupt controller etc.

 Figure below shows the basic block diagram of

microprocessor based system containing some standard
components.

 28

Fig. 3.4 Basic block diagram of Microprocessor Based System

 All components of the system communicate via system
buses i.e address, data and control buses.

Central Processing Unit [CPU]

 The CPU is the heart of the system, the master controller of
all operations that can be performed.

 It reads instruction from the memory then decodes and

finally executes that instruction to perform desired operation.

 The CPU is also responsible to generate all necessary

control signals and control other components in the system.

 The CPU section consists of a microprocessor and the

associated logic circuitry required enabling the CPU to
communicate with the other components in the system via
system buses.

 This logic may consist of data and address driver for

communication.

 The actual microprocessor used depends on the complexity

of the task that will be controlled or performed by the system.

 29

Memory

 It has two components i.e read only memory [ROM] and

random access memory [RAM].

 Sometimes other semiconductor memories such as EPROM,

PROM, E2PROM can be used and usually contains monitor
programs or BIOS program.

 The ROM included provides the system with its intelligence,

which is needed at the start up (power on) to configure or
initialize peripheral.

 The RAM is of again two types i.e static and dynamic RAM.

 The static RAM is fast and easy to interface, but comes in

small sizes and costly.

 The dynamic RAM is slow and requires numerous refreshing

cycles to retain the stored data, even so dynamic RAM is the
choice for large memory where large amount of data can be
stored as these RAM‟s are cheaper in cost.

 Both static and dynamic RAM lose their information, when

power is turned off, which may cause a problem in certain
situations.

 In the latest systems, non-volatile memory (NVM) is used

which retains its information even when power is turned off.

 NVM comes in a small size; hence it is used to store only the

most important information during power failure.

Timing and Control
 This section of the system governs all system timing and

thus is responsible for the proper operation of the entire
system hardware.

 The timing section usually consists of a crystal oscillator and

timing circuitry set to operate the microprocessor at its
specified clock rate.

I/O Section
 Some system may require the I/O peripherals for the some

specific purpose such as keyboard for entering data and
program, monitor to display results, printers to get hard copy
etc.

 30

 So, microprocessor can communicate with these peripheral
either using parallel or serial communication port.

 Serial communication is slow but it has advantage of
simplicity i.e requires only two wires for receive, transmit and
ground.

 Serial communication is easily adapted for use in fibre optics
cables.

 On other hand, parallel I/O is faster but requires more lines
depending on size of data bus hence it is costly for
implementation.

 A parallel I/O operation can be used to transfer data to/from
a hard disk, reading switch information, controlling indicator
lights, transferring data to A/D or D/A converter and other
types of parallel devices.

Interrupt Circuitry
 When a microprocessor used in control applications, there

will be times when the system must respond to special
external circumstances.

 Such circumstances interrupt the microprocessor from its

normal execution to service the unexpected event.

 The system software is designed to handle such unexpected

event.

 Interrupts are used to perform a special task such as real

time clocks, multitasking capability and fast I/O operations.

 The interrupt circuitry needed from system to system will

vary depending on the applications.

3.3 FEATURES OF 8085 MICROPROCESSOR

 8085 microprocessor is an 8-bit microprocessor.
 It can accept process or provide 8-bit data simultaneously.
 It operates on a single +5v power supply connected at Vcc and

power supply ground is connected to Vss.
 It can operate on clock cycle with 50% duty cycle.
 It has on chip clock generator.
 This internal clock generator requires tuned circuit like LC, RC

or crystal.
 It can operate with a 3 MHz clock frequency.
 It has 16 address lines; hence it can access 64 kbytes of

memory.
 It provides 8 bit I/O addresses to access 256 I/O ports.

 31

3.4 EXERCISE

1. What is a Microprocessor?
2. Explain the classification of the functions performed by the

Microprocessor.
3. List the four operations commonly performed by the

Microprocessor.
4. Explain the three set of communication lines used to perform

the functions of 8085 microprocessors.
5. What is a bus?
6. Specify the function of the address bus and the direction of

the information flow on the address bus.
7. Why is the data bus bidirectional?
8. Explain Control Bus.
9. What are the various operations performed by the 8085

Microprocessor on the data?
10. Specify the four control signals commonly used by the 8085

microprocessor.
11. Explain with diagram Microprocessor Based System.
12. What are the features of 8085 Microprocessor?

3.5 REFERENCES

Computer System Architecture – M. Morris Meno, PHI, 1998

Computer Architecture and Organization - John P Hayes, McGraw
Hill, 1998

Digital Computer Fundamentals – Malvino

Digital Computer Fundamentals – Thomas C Bartee, TMG

Computer Organization and Architecture – William Stallings

Microprocessor Architecture and Programming and Applications
with the 8085 – R.S. Gaonkar, PRI



4

 32

4

PIN DIAGRAM AND ARCHITECTURE OF

8085 MICROPROCESSOR

Topics Covered:

4.1 Pin Diagram of 8085 Microprocessor with description

4.2Architecture of 8085 Microprocessor

4.1 PIN DIAGRAM OF 8085 MICROPROCESSOR WITH
DESCRIPTION

The 8085 microprocessor

 8085 is a 8-bit general purpose microprocessor capable of

addressing 64K memory. The device has 40 pins and
requires +5V single power supply. It can operate with 3MHz
single-phase clock.

 The logic pin out of the 8085-microprocessor signals can be

classified into six groups:
1. Address bus
2. Multiplexed Address/Data bus
3. Control and status signals
4. Power supply and clock frequency
5. Externally initiated signals, including interrupts
6. Serial I/O ports

 33

Fig. 4.1 Pin Diagram of 8085 Microprocessor

 34

Fig. 4.2 The Signals of 8085 Microprocessor

Address Bus:
 The 16 address lines are split into two parts A15-A8 and AD7-

AD0. Higher order bus is unidirectional and the signal lines
AD7-AD0 are used for a dual purpose.

Multiplexed Address/Data Bus:
 The signal lines AD7-AD0 are bi-directional. They are used

as lower order address bus as well as data bus. In executing
an instruction, during the earlier part of the cycle, these lines
are used as low order address bus. During later part of cycle
these lines are used are data bus.

 35

Control and Status Signals:
 This group of signals includes two control signals RD and

WR, three status signals (IO/M, S1 and S0) to identify nature
of operation.

 ALE (Address Latch Enable) : This is a +ve pulse
generated every time when 8085 begins an
operation(machine cycle); it indicates that the bits on
AD7-AD0 are address bits. This signal is primarily used to
latch the low-order address bus.

 RD-(Read) : This is a Read control signal(Active low).
This signal indicates that the selected I/O or memory
device is to be read and data are available on data bus.

 WR-(Write) : This is a Write control signal(Active low).
This signal indicates that the data on the data bus are to
be written into a selected memory or I/O location.

 IO/M : This is a status signal used to differentiate
between I/O and memory operations. When it is high, it
indicates an I/O operation; when it is low, it indicates a
memory operation. This signal is combined with RD and
WR to generate I/O and memory control signals.

 S1 and S0 : These status signals are similar to IO/M and
used to identify various operation as follows

Table 4.1 8085 Machine Cycle Status and Control

Signals

Machine Cycle Status Control
signals IO/M S1 S0

Opcode Fetch
0 1 1

RD=0

Memory Read 0 1 0 RD=0

Memory Write 0 0 1 WR=0

I/O Read 1 1 0 RD=0

I/O Write 1 0 1 WR=0

Interrupt
Acknowledge

1 1 1 INTA=0

Halt Z 0 0
RD,WR=Z

and
INTA=1

Hold Z X X

Reset Z X X

Z= High impedance X=Unspecified

 36

 Power Supply and Clock Frequency:
The power supply and frequency signals are as follows
Vcc : +5V power supply
Vss : Ground Reference

X1, X2 : A crystal is connected at these two pins. The
frequency is internally divided by two; therefore to operate a
system at 3MHz the crystal should have frequency of 6MHz.
CLK(OUT) : Clock output. This signal can be used as the
system clock for other devices.

Externally initiated signals, including interrupts:
 The 8085 has five interrupt signals that can be used to

interrupt program execution. The microprocessor
acknowledges the interrupt request by INTA signal.

 In addition to interrupts, three pins- RESET, HOLD and

READY – accept the externally initiated signals as inputs. To
respond to the HOLD request, the 8085 has one signal
HLDA (Hold Acknowledge).

RESET IN:
 When the signal on this pin goes low, the program counter is

set to zero the buses are tri-stated and the MPU is Reset.

RESET OUT
 This signal indicates that the MPU is being Reset. The signal

can be used to Reset other devices.

Interrupt Description

INTR (Input) Interrupt Request: This is used as a general
purpose interrupt; it is similar to INT of 8080A

INTA (Output) Interrupt Acknowledge: This is used to
Acknowledge the interrupt.

RST 7.5 (Inputs)

RST 6.5

RST 5.5

Restart Interrupts: These are vectored interrupts
that transfer the program control to specific
memory locations. They have higher priorities
than INTR interrupt. Among these three priority
order is 7.5, 6.5 and 5.5

TRAP (Input) This is non mask able interrupt and has highest
priority.

HOLD (Input) This signal indicates the peripherals such as
DMA (Direct Memory Access) controller are
requesting the use of the address and data
buses.

 37

HLDA (Output) Hold Acknowledge: This signal acknowledges
the HOLD request.

READY (Input) This signal is used to delay the microprocessor
Read or Write cycles until a slow-responding
peripheral is ready to send or accept data. When
this signal goes low, the microprocessor waits
for an integral number of clock cycles until it
goes high.

Table 4.2 8085 Interrupts and Externally Initiated Signals

Serial I/O Ports:
 The 8085 has two signals to implement the serial

transmission: SID (Serial Input Data) and SOD (Serial
Output Data).

 In serial transmission, data bits are sent over a single line,
one bit at a time, such as a transmission over telephone
lines.

4.2 ARCHITECTURE OF 8085 MICROPROCESSOR

The architecture of the 8085 Microprocessor is shown below:

Fig. 4.3 Block diagram of 8085 microprocessor

 38

Control Unit
 Generates signals within microprocessor to carry out the

instruction, which has been decoded.

 In reality causes certain connections between blocks of the

microprocessor to be opened or closed, so that data goes
where it is required, and so that ALU operations occur.

Arithmetic Logic Unit
 The ALU performs the actual numerical and logic operation

such as „add‟, „subtract‟, „AND‟, „OR‟, etc.

 Uses data from memory and from Accumulator to perform

arithmetic.

 Always stores result of operation in Accumulator.

Registers
 The 8085programming model includes six registers, one

accumulator, and one flag register, as shown in Figure.

Fig. 4.4 The 8085 Programmable Registers

 In addition, it has two 16-bit registers: the stack pointer and
the program counter.

 39

 They are described briefly as follows.

 The 8085/8080A has six general-purpose registers to store

8-bit data; these are identified as B, C, D, E, H and L as
shown in the figure.

 They can be combined as register pairs - BC, DE, and HL -

to perform some 16-bit operations.

 The programmer can use these registers to store or copy

data into the registers by using data copy instructions.

Accumulator

 The accumulator is an 8-bit register that is a part of
arithmetic/logic unit (ALU).

 This register is used to store 8-bit data and to perform

arithmetic and logical operations.

 The result of an operation is stored in the accumulator.

 The accumulator is also identified as register A.

Flags
 The ALU includes five flip-flops, which are set or reset after

an operation according to data conditions of the result in the
accumulator and other registers.

 They are called Zero (Z), Carry (CY), Sign (S), Parity (P),

and Auxiliary Carry (AC) flags.

 The most commonly used flags are Zero, Carry, and Sign.

 The microprocessor uses these flags to test data conditions.

 For example, after an addition of two numbers, if the sum in

the accumulator id larger than eight bits, the flip-flop uses to
indicate a carry -- called the Carry flag (CY) -- is set to one.

 When an arithmetic operation results in zero, the flip-flop

called the Zero (Z) flag is set to one.

 The figure shows an 8-bit register, called the flag register,

adjacent to the accumulator.

 40

Fig. 4.5 Format of flag registers of 8085 register

 However, it is not used as a register; five bit positions out of
eight are used to store the outputs of the five flip-flops.

 The flags are stored in the 8-bit register so that the

programmer can examine these flags (data conditions) by
accessing the register through an instruction.

 These flags have critical importance in the decision-making

process of the microprocessor.

 The conditions (set or reset) of the flags are tested through

the software instructions. For example, the instruction JC
(Jump on Carry) is implemented to change the sequence of
a program when CY flag is set.

 The thorough understanding of flag is essential in writing

assembly language programs.

Program Counter (PC)
 This 16-bit register deals with sequencing the execution of

instructions.

 This register is a memory pointer.

 Memory locations have 16-bit addresses, and that is why

this is a 16-bit register.

 The microprocessor uses this register to sequence the

execution of the instructions.

 The function of the program counter is to point to the

memory address from which the next byte is to be fetched.

 41

 When a byte (machine code) is being fetched, the program
counter is incremented by one to point to the next memory
location.

Stack Pointer (SP)
 The stack pointer is also a 16-bit register used as a memory

pointer.

 It points to a memory location in R/W memory, called the

stack.

 The beginning of the stack is defined by loading 16-bit

address in the stack pointer.

 The stack concept is explained in the chapter "Stack and

Subroutines."

Instruction Register/Decoder

 Temporary store for the current instruction of a program.
 Latest instruction sent here from memory prior to execution.
 Decoder then takes instruction and „decodes‟ or interprets

the instruction.
 Decoded instruction then passed to next stage.

Memory Address Register
 Holds address, received from PC, of next program

instruction.

 Feeds the address bus with addresses of location of the

program under execution.

Control Generator
 Generates signals within microprocessor to carry out the

instruction which has been decoded.

 In reality causes certain connections between blocks of the

uP to be opened or closed, so that data goes where it is
required, and so that ALU operations occur.

Register Selector
 This block controls the use of the register stack in the

example.

 Just a logic circuit which switches between different registers

in the set will receive instructions from Control Unit.

 42

General Purpose Registers
 Microprocessor requires extra registers for versatility.
 Can be used to store additional data during a program.
 More complex processors may have a variety of differently

named registers.

8085 System Bus
 Typical system uses a number of buses i.e collections of

wires, which transmit binary numbers, one bit per wire in
term of voltage levels 0 volt or 5 volt for 0 and 1 respectively.

 A typical microprocessor communicates with memory and

other devices input and output using three busses i.e
Address bus, Data bus and Control bus.

Address Bus
 One wire is required for each bit, therefore 16 bits requires

16 wires. Binary number carried by these wires tells memory
to open the designated memory location. Binary data can
then be store in or taken out from the memory location
depending on the control signal.

 The Address bus consists of 16 wires, therefore its “width” is

16 bits.

 A 16 bit binary number allows 216 or 64K different numbers

i.e 0000000000000000 up to 1111111111111111.

 Because size of memory location is of 8 bit each, each with

a unique address, the size of the address bus determines
the size of memory which can be accessed.

 To communicate with memory the microprocessor sends an

address on the address bus, e.g 0000000000000011 (3 in
decimal), to the memory.

 The memory selects location number 3 for reading or writing

data.

 Address bus is unidirectional, i.e numbers only sent from

microprocessor to memory, not other way.

Data Bus
 Data Bus carries „data‟, in binary form, between

microprocessor and other external devices such as memory
or peripherals.

 43

 Size of data bus is determined by the size of location in
memory and data bus size helps determine performance of
microprocessor.

 The Data Bus is typically of 8 bit, 16 bit or 32 bit and it is bi-

directional.

 8085 has 8 bit data bus, therefore 28 combinations of binary

digits are possible.

 Data bus used to transmit “data”, i.e information, results of

arithmetic, etc between memory and the microprocessor.

 Therefore larger number has to be broken down into chunks

of 255, this slows microprocessor.

 Data Bus also carries instructions from memory to the

microprocessor.

 Size of the bus therefore limits the number of possible

instructions to 256, each specified by a separate number.

Control Bus
 Control bus is unidirectional.

 How can we tell the address is a memory address or an I/O

port address and read/write data from/to memory or I/O
port?

 Normally control signal are of following types:

o Memory Read
o Memory Write
o I/O Read
o I/O Write

 When Memory Read or I/O Read is active, data is input to
the processor.

 When Memory Write or I/O Write is active, data is output

from the processor.

 The control bus signals are defined from the processor‟s

point of view.

De-Multiplexing of Address/Data Bus of 8085
 In the 8085 microprocessor, the higher order address lines

i.e A8-A15 are directly available, but the lower order address
lines are multiplexed with data bus in time sharing.

 44

 Hence the de multiplexing of address/data bus is required i.e
separation of address and data bus.

 In T1 state of every machine cycle, the contents on AD0-AD7

is the lower order address i.e A0-A7 and at the same time,
the ALE also goes high for half of T1 state.

 After T1 state, the 8085 remove the contents of AD0-AD7

lines and use same lines as a data lines [data bus] for next
clock cycle T2 state onwards.

 Hence, the de-multiplexing of address/data bus can be

implemented by using tri-state octal latch 74LS373 and this
latch can be controlled by using ALE signal of 8085 as
shown in the following figure:

Fig. 4.6 De-multiplexing of AD0-AD7

 When ALE goes high, the address signals will be latched in

the octal latch 74LS373 and output of the latch will be
provided on A0-A7.

 When ALE goes low, the latch will be disabled and the AD0-

AD7 can be used as data bus D0-D7.

 45

Generation of Control Signal
 The Control signals required are RD and WR, but in any

microprocessor based system, we will find memory devices
as well as I/O devices.

 Hence, the control signals required are MEMR, MEMW, IOR

and IOW and normally used to distinguish between memory
and I/O devices. These signals can be generated by using
3:8 decoder 74LS138 as shown in figure below:

Fig. 4.7 Generation of Control Signal

Typical 8085 System Configuration
 The typical 8085 system can be designed using decoder

(74LS138) to generate different control signals, latch
74LS373 to de-multiplexed address/data bus i.e separate
address and data bus.

 The device 72LS245 Octal Transceiver is optional but in

buffered system is required.

 The typical 8085 based system configuration is shown in

figure below:

 46

Fig. 4.8 Typical 8085 based system configuration

Address Decoding Techniques
 As we know, 8085 has 16 address lines using which allows

addressing up to 64 KB of main memory.

 Most of the time we do not need complete 64KB memory, so

most of the address lines will remain free which can be used
generate chip select and determine the range of the
addresses the memory will occupy.

 There are two types of decoding technique depending on the

number of lines used for the decoder.
o Full or absolute decoding
o Partial decoding

 In full decoding, all remaining address lines are used for the
decoder to generate chip select signal for the memories as
shown in figure below:

 47

Fig. 4.9 Full Decoding

 For example, suppose we want to interface 8k of memory,
then thirteen address lines are required for the memory.

 Then remaining three address lines can be used for

decoder, so more hardware is required for decoding the
numbers of address bits.

 But in partial decoding, only one line out of remaining

address lines is used to generate chip select signal as
shown in figure below:

 48

Fig. 4.10 Partial Decoding

 For above example, out of remaining three address lines, we
can use any one of them as chip select signal and rest of the
address lines will remain open or unconnected, so less
hardware is required for decoding.

Difference between Full and Partial Decoding

Sr.
No.

Full Decoding Partial Decoding

1. All address lines are used by
memory chips and decoders.

All lines are not used.

2. Each memory location has
only one unique address.

Each location has two or
more address because the
number of addresses per
memory location is 2n where
n is number of unused
address lines.

3. Address decoder hardware
is complicated and
expensive.

Address decoder is simple
and less expensive.

4. The size of memory is not
reduced.

The size of memory is
reduced.

 49

Exercise

1. Draw the pin diagram of 8085 microprocessor and explain
the various pins.

2. Explain the architecture of 8085 microprocessor with the
help of the block diagram.

3. Explain with the help of a diagram various programmable
registers of 8085.

4. With the help of a diagram, explain the format of the flag
register.

5. Explain Program Counter and Stack Register.
6. Write a short note on 8085 system bus.
7. Explain de multiplexing of address bus of 8085.
8. Write a short note on address decoding techniques.
9. State the difference between full and partial decoding.

References

Computer System Architecture – M. Morris Meno, PHI, 1998

Computer Architecture and Organization - John P Hayes, McGraw
Hill, 1998

Digital Computer Fundamentals – Malvino

Digital Computer Fundamentals – Thomas C Bartee, TMG

Computer Organization and Architecture – William Stallings

Microprocessor Architecture and Programming and Applications
with the 8085 – R.S. Gaonkar, PRI





 50

5

INTERFACING TECHNIQUES

Topics Covered:

5.1 I/O Mapped I/O

5.2 Memory Mapped I/O

5.3 Difference between Memory Mapped I/O and I/O Mapped I/O

5.4 Memory Device

5.5 Chip Select Logic

Introduction

There are two method of interfacing memory or I/O devices with the
microprocessor are as follows:

a) I/O mapped I/O b) Memory mapped I/O

5.1 I/O MAPPED I/O

 In this technique, I/O device is treated as a I/Q device and
memory as memory.

 Each I/Q device uses eight address lines.
 If eight address lines are used to interface to generate the

address of the I/O port, then 256 input and 256 output
devices can be interfaced with the microprocessor.

 The address bus of the 8085 microprocessor is 16 bit, so we
can either use lower order address lines i.e. A0 – A7 or higher
order address lines i.e. A8 – A15 to address I/O devices
where the address available on A0 – A7 will be copied on the
address lines A8 – A15 .

 In I/O mapped I/O, the complete 64 Kbytes of memory can
be interfaced as all address lines can be used to address
memory locations as the address space is not shared among
I/O devices and memory and 256 input and /or output
devices.

 In this type, the data transfer is possible between
accumulator A register and I/O devices only.

 Address decoding is simple, as less hardware is required.
 The separate control signals are used to access I/O devices

and memory such as IOR, IOW for I/O port and MEMR,

 51

MEMW for memory hence memory location are protected
from the I/O access.

 But in this type, arithmetic and logical operation are not
possible directly.

 Also we cannot use other register for data transfer between
I/O device and microprocessor accepts A register.

 The figure below shows interfacing I/O devices in I/O
mapped I/O.

Fig.5.1 I/O mapped I/O ports

5.2 MEMORY MAPPED I/O

 In this technique, I/O devices are treated as memory and

memory as memory, hence the address of the I/O devices
are as same as that of memory i.e. 16 bit for 8085
microprocessor.

 So, the address space of the memory i.e. 64 Kbytes will be
shared by the I/O devices as well as by memory.

 All 16 address lines i.e. A0-A15 is used to address memory
locations as well as I/O devices.

 The control signals MEMR and MEMW are used to access
memory devices as well as I/O devices.

 The data transfer is possible between any register of the
microprocessor and I/O device or memory device.

 Hence, all memory related instructions can be used to
access devices as they are treated as memory devices.

 52

 Address decoding of the I/O devices and memory devices
are complicated and expensive as more hardware is
required.

 The 8085 microprocessor can access either 64 K I/O ports
or memory locations, hence the total numbers of the I/O
ports and memory locations should not be greater than 64 K.

 I/O devices and memory locations are distinguished by the
addresses only.

Fig. 5.2 Memory mapped I/O ports

 Arithmetic and logical operation can be performed directly on
the I/O devices.

 Most of the memory instructions are long; hence it reduces
the speed of I/O.

 Normally, the speed of the I/O devices are very slow, hence
the common interface used in memory mapped I/O will
reduce the speed of memory access unnecessarily.

 The Figure above shows interfacing of I/O devices in
memory mapped I/O.

 53

5.3 DIFFERENCE BETWEEN MEMORY MAPPED I/O
AND I/O MAPPED I/O

No I/O mapped I/O Memory mapped I/O

1 I/O devices are treated as
I/O devices and memory
devices are treated as
memory

I/O and memory devices
are treated as memory
devices.

2 Separate Control Signals for
I/O devices are IOR , IOW
and memory devices are

MEMR, MEMW.

Control signals for
memory as well as I/O
devices are MEMR and
MEMW.

3 IN and OUT instructions are
required for I/O read and
write operation.

All memory related
instruction are used to
Access I/O devices.

4 Data transfer is possible
between I/O

device and Accumulator only.

Data transfer is possible
between any register and
I/O devices.

5 Address decoding logic is
simple.

Address decoding logic is
complicated and
expensive.

6 8085 can access complete
64 Kbytes of

Memory and 256 of Input
and 256 output devices as
address space is not
shared.

8085 can access 64
bytes maximum I/O

devices or memory as
address space is shared,
so total numbers of I/O
ports and memory
locations should not more
than 64K .

7 I/O Device address is 8 bit
and memory address is 16
bit.

I/O device and memory
address is 16 bit as I/O
devices are treated as
memory.

8 I/O devices and memory are
distinguished by control
signals and addresses.

I/O devices and memory
are distinguished by only
addresses.

9 Arithmetic and logical
operations are not possible
directly with I/O devices.

Arithmetic and logical
operations are possible
directly with I/O devices.

 54

5.4 MEMORY DEVICE

 Memory is the storage device which can be used to store

monitor program, users program or users data.
 So memory is an important component of the

microprocessor based system, which will allow you to store
program and data.

 The memory consists of the thousands of memory cells
arranged to store data.

 Each memory cell is capable of storing 1 bit of the data.
 Hence, to use memory to store programs or data of user or

system, memory must be interfaced with microprocessor
properly, so that it can be accessed while reading or writing
data or program from/to it .

 In the same way, input and output devices are also required
to read or write data out from the microprocessor using input
device such as keyboard or output device using console.

 So, these devices must be interface properly with the
microprocessor so that user can read data from input device
and write data to the output device.

Memory Address
 In computer science, a memory address is a unique identifier

for a memory location at which a CPU or other device can
store a piece of data for later retrieval.

 In modern byte- addressable computers, each address
identifies a single byte of storage; data too large to be stored
in a single byte may reside in multiple bytes occupying a
sequence of consecutive addresses.

 Some microprocessors were designed to be word-
addressable, so that the typical storage unit was actually
larger than a byte.

Memory Interfacing
1. Each memory chip like RAM, ROM, EPROM, E2PROM and

DRAM have numbers of pins and these pins are used to
accept different kinds of signals.

2. Normally every memory chip has pins for address, data,
control signals and chip select signals.

Address Pins

 Address pins are used to accept address from the
system address bus transmitted by the microprocessor.

 The numbers of address pins are depending upon size of
the memory as shown in Table below

 55

Table 5.1

Nos of Address lines
used

Size of memory in
bytes

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024 ≈ 1k

11 2048 ≈ 2k

12 4096 ≈ 4k

13 8192 ≈ 8k

14 16384 ≈ 16k

15 32768 ≈ 32k

16 65536 ≈ 64k

Data Pins
 The size of the data bus depends on the data bits, which can

be stored in memory location.
 Slandered memory data bits stored in a memory location,

available are 1, 4 and 8 bits.

CS (Chip Select) or CE (Chip Enable) Pin
 This signal of the memory chip is ACTIVE LOW and acts as

master enable pin for read or write operation.
 Hence, for every read or write operation, this signal must be

low otherwise no operation will be performed.

WR (Write Control Signal) Pin
 This is an active low input control signal used to write data to

the memory location whose address is available on address
lines if chip select signal is enable.

 This signal is available on system control bus and generated
by the microprocessor or other master in the system such as
DMA controller or co-processor.

RD / OE (Read / Output Enable) Pin
 This is an active low input control signal used to read data

from the memory location whose address is available on
address lines if chip select signal is enable.

 56

 This signal is available on system control bus and generated
by the microprocessor or other master in the system such as
DMA controller or co-processor.

 Beside these pin described above, some additional pin also
available depending on the type of memory.

 For example, Vpp and PGM pins are available in EPROM for
programming as in normal condition EPROM is read only
memory.

 But EPROM can be programmed; the separate EPROM
programming hardware is required.

Different Memory IC’s Available are shown in table below
Table 5.2

Type of
memory

IC
number

 Memory Sizes Address lines
x data lines

EPROM 2716 2K X 8

EPROM 2732 4k x 8

EPROM 2764 8k X 8

SRAM 6116 2k X 8

SRAM 6264 8k x 8

SRAM 2114 1K X 4

5.5 CHIP SELECT LOGIC

Chip select logic can be developed using either combination of
different gates such as AND, NAND, NOT etc. or decoders.

Using Logic Gates
 Now take an example of interfacing of 2K of RAM with the

microprocessor 8085, the 8085 is an 8 bit microprocessor.
Hence all 8 lines of data bus can be directly connected after
de-multiplexing to D0-D7 of the RAM memory. The eleven
(11) address lines required to access any memory location
within 2k memory, so out of 16 address lines (A0-A15) of
8085 microprocessor, the A0-A10 address lines can be
connected directly to generate chip select signal using
NAND and NOT gates depending on the addresses required
as shown in following figure.

 57

Fig 5.3 Chip select using NAND gates

 For generation of chip select we are using NAND gate, when
input to NAND gate are all logic 1, then output of NAND gate
will be logic 0 and for all other combination the output will be
logic 1.

 The chip select is active low signal, hence all inputs of the
NAND gates must be logic 1 to generate chip select signal
as given below.

A15 A14 A13 A12 A11

1 0 0 0 0

 Hence addresses map of the 2K of RAM is given below.

A

15
A

14
A

13
A

12
A

11
A

10
A

9
A

8
A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0
ADDR
ESS

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8000H

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 87FFH

Used for chip
select

Decoder logic

Connected to A – A10 2 K RAM

 The interfacing diagram of 2K X 8 RAM is shown in following

figure

 58

Fig. 5.4 Interfacing of 2K X 8 RAM

Using Decoder
 Consider above example of memory interfacing, where

remaining address lines i.e. A11-A15 can be connected to the
decoder. Now connect A11, A12, A13 to A, B,C inputs of 3:8
decoder 74LS138 respectively, A14 to G2A and G2B enable
pins and at last A15 to G1 pin of 3:8 decoder as shown in
following figure.

 59

Fig. 5.5 Using decoder

 After making the connection as shown above, the address
map of 2K RAM will be same as specified above.

 60

Fig. 5.6 Interfacing of 2K X 8 RAM using decoder chip
select logic

 Here, the advantage of using decoder is minimum hardware
is required as compared using NAND gates. When we use
NAND gates, other logical devices are also required as per
requirement as in above examples, NOT gates are used.
Hence for numbers of devices, numbers of NAND and other
logical devices are required to generate chip select signals.

 But when we use decoder like 3:8 (74LS138), we can

generate eight chip select signals using one decoder IC, as it
has eight active low output pins. The complete interfacing
diagram using decoder to generate chip select signals for 2K
of RAM is shown in Fig. 4.6

 61

Exercise

1. Explain I/O Mapped I/O with diagram.
2. Explain Memory Mapped I/O with diagram.
3. Differentiate between I/O Mapped I/O and Memory Mapped

I/O.
4. What is a memory device?
5. Explain Memory Interfacing.
6. Explain various data pins.
7. Explain how chip select logic can be used using GATES.
8. Explain how chip select logic can be used using decoders.

References

Computer System Architecture – M. Morris Meno, PHI, 1998

Computer Architecture and Organization - John P Hayes, McGraw
Hill, 1998

Digital Computer Fundamentals – Malvino

Digital Computer Fundamentals – Thomas C Bartee, TMG

Computer Organization and Architecture – William Stallings

Microprocessor Architecture and Programming and Applications
with the 8085 – R.S. Gaonkar, PRI





 62

6
Unit III

8085 MICROPROCESSOR
PROGRAMMING MODEL

Topics Covered:

6.1 8085 Programming Model

6.2 Instruction Classification

6.3 Instruction Format

6.4 Overview of 8085 Instruction Set

6.1 8085 PROGRAMMING MODEL

Figure 6.1 8085 programming model

 The programming model consists of some segments of the ALU
and the registers.

 This model does not reflect the physical structure of 8085 but
includes information that is critical writing assembly programs.

 63

 The model includes six registers; one accumulator and one flag
register as shown in following figure.

 In addition to this it has two 16-bit registers called stack pointer
and program counter

Fig 6.2 8085 Registers

Registers:

 8085 has six general-purpose registers to store 8-bit data.
 These registers are B, C, D, E, H, L as shown in above figure.
 They can be combined as register pairs – BC, DE, and HL – to

perform some 16-bit operations.
 The programmer can use these registers to store or copy data

into the registers by using data copy instructions.

Accumulator:

 The accumulator is an 8-bit register that is part of the
arithmetic/logic unit (ALU).

 This register is used to store 8-bit data and to perform arithmetic
and logical operations.

 The result of an operation is stored in the accumulator.

 The accumulator is also identified as register A.

 64

Flags:

 The ALU includes five flip flops, which are set or reset as per
the operations results in accumulator and other registers.

 They are called Zero(Z) , Carry (CY), Sign(S) , Parity(P) and

Auxiliary carry (AC) flags. The most commonly used flags are
Zero, Carry and Sign.



S Z AC P CY

D7 D6 D5 D4 D3 D2 D1 D0

Figure 6.3 Flag Register

 The flags are important in decision-making process.

 E.g. the instruction JC (Jump on Carry) is implemented to

change the sequence of a program when the Carry CY flag is
set.

 Z – Zero : The zero flag is set to 1 when the result is zero;

otherwise it is reset.

 CY – Carry : If an arithmetic operation results carry then CY flag

is set; otherwise it is reset.

 S – Sign: The sign flag is set if bit D7 of the result =1 ; otherwise

it is reset

 P- Parity: If the result has an even number of 1s , the flag is set;

for an odd number of 1s the flag is reset.

 AC – Auxiliary Carry: In an arithmetic operation, when a carry is

generated by digit D4, the Ac flag is set. This flag is used
internally for BCD operations; there is no Jump instruction
associated with this flag.

Program Counter and Stack Pointer:

 There are two 16-bit registers used to hold memory addresses.
 The size of these registers is 16-bits because the memory

addresses are 16-bits.
 The MPU uses PC register to sequence the execution of the

instructions.
 The function of Program counter is to point to the memory

location from which the next byte is to be fetched.

 65

 When a byte(machine code) is fetched the program counter is
incremented by one to point to the next memory location.

 The stack pointer points to the location in R/W memory. The
beginning of the stack is defined by loading 16-bit address in the
stack pointer. e.g. Instruction to initialize stack pointer is LXI
SP,2400H

6.2 8085 INSTRUCTION CLASSIFICATION

Instruction:
 An instruction is a binary pattern designed inside

microprocessor to perform a specific function.
 Entire group of instruction is called instruction set.
 8085 instructions are functionally categorized into five types

1) Data transfer (copy) operations
2) Arithmetic operations
3) Logical operations
4) Branching operation
5) Machine control operations

Data transfer (copy) operations:
 This group of instruction copies data from a location called a

source to another location called destination, without modifying
the contents of source.

e.g. a. Copy contents of register B into register D
 b. Load register B with the data byte 35H
 c. From memory location 4000H to register B
 d. From input keyboard to the accumulator

Arithmetic operations:

Addition:
 Any 8-bit number, or contents of a register, or the contents of

memory location can be added to the contents of accumulator
and sum is stored in the accumulator.

 No two other 8-bit registers can be added directly (e.g. Contents
of register B cannot be added directly to the contents of C) The
instruction DAD is a exception; it adds 16-bit data directly in
register pair.

Subtraction:
 Any 8-bit number, or contents of a register, or the contents of

memory location can be subtracted from the contents of
accumulator and the result is stored in the accumulator.

 66

 The subtraction is performed in 2‟s complement, and the result,
if negative, is expressed in 2‟s complement. No two other
registers are subtracted directly.

Increment/Decrement:
 The 8-bit contents of register or memory location can be

incremented or decremented by 1.

 Similarly, 16-bit contents of register pair can be incremented or

decremented.

 The increment/decrement differs from addition and subtraction

in such a way that they can be performed on any one the
register or in memory location

Logical operations:

AND,OR, Exclusive-OR:
 Any 8-bit number or the contents of a register, or a memory

location can be logically ANDed, ORed, or Exclusive-ORed with
the contents of the accumulator. The results are stored in
accumulator.

 E.g To logically AND the contents of a B register with the

contents of A the instruction is ANA B.

Rotate (shift):
 Each bit in the accumulator is can be shifted either left or right to

the next position. E.g. To rotate left each binary bit of the
accumulator instruction is RLC. (Bit D7 is placed in the position
of D0 as well as in the Carry flag.)

Compare:
 Any 8-bit numbers or the contents of a register, or a memory

location can be compared for equality, greater than, or less
than, with the contents of accumulator.

 E.g. The instruction CPI 32H compare the content of

accumulator with 32H for less than, equal to or greater than.

Complement:
 The content of accumulator can be complemented; all the 0s

are replaced by 1s and all 1s are replaced by 0s.

 E.g. the instruction is CMA to complement the content of

Accumulator.

 67

Branching operation:

Jump:
 The conditional jumps are an important aspect of the decision-

making process in programming.

 These instructions test for certain condition (e.g. Zero

/Carry/Sign etc) and alter the program sequence when condition
is met. In addition to conditional jump, the instruction set
includes unconditional jump. E.g. JMP 2500H

Call, Return and Restart:
 These instructions change the sequence of program either by

calling a subroutine or returning from a subroutine.

 The conditional Call and Return instructions also can test

condition flags.

Machine control operations:
 These instructions control machine functions such as Halt,

Interrupt or do nothing.

6.3 INSTRUCTION FORMAT

Instruction word size

 8085 instruction set is classified into the following three
groups according to word size or byte size.

1) 1-Byte instruction
2) 2-Byte instruction
3) 3-Byte instruction

ONE-Byte Instruction:

 A 1-byte instruction includes opcode and operand in the
same byte

 E.g.

Task Opcode Operand Binary
Code

Hex
Code

Copy contents of
accumulator in reg. C

MOV C, A 0100
1111

4FH

Add contents of reg. B
to the contents of
accumulator.

ADD B 1000
0000

80H

Invert(Complement)
each bit in the
accumulator
(Implicit operand)

CMA 0010
1111

2FH

 68

TWO-Byte Instruction:

 In 2-byte instruction first byte specifies the operation code and
the second byte specifies the operand.

 E.g.

Task Opcode Operand Binary Code Hex
Code

Load an 8-bit
data byte in the
accumulator

MVI A, 50H 0011 1110
(1st byte)
0101 0000
(2nd byte)

 3EH
 50

Load an 8-bit
data byte in
reg. C

MVI C, F2H 0000 0110
(1st byte)
1111 0010
(2nd byte)

06H
F2H

THREE-Byte Instruction:

 In 3-byte instruction first byte specifies the operation code and
the following two bytes specifies the 16-bit address

 E.g.

Task Opcode Operand Binary
Code

Hex
Code

Load contents of
memory 2050H
into A

LDA 2050H 0011 1010
(1st byte)
0101 0000
(2nd byte)
0010 0000
(3rd byte)

3A
50
20

Transfer the
program
sequence to
memory location
2085H

JMP 2085 1100 1010
(1st byte)
1000 0101
(2nd byte)
0010 0000
(3rd byte)

C3
85
20

Opcode Format

 To understand operation code (opcode), we need to examine
how an instruction is designed into the microprocessor.

 This information is useful in reading user manual, in which

operations codes are specified in binary formats and 8-bits are
divided into various groups.

 69

 In 8085 microprocessor chip all operations, registers, and status
flags are identified with specific code.

E.g. Internal registers can be identified as follows

CODE Registers CODE Registers

000 B 00 BC

001 C 01 DE

010 D 10 HL

011 E 11 AF OR SP

100 H

101 L

111 A

110 Reserved for memory
related operation

 Some of the operation codes are identified as follows:

Function Operation Code

Rotate each bit of accumulator
to the left by one position.

00000111 = 07H (8-bit opcode)

Add the contents of a register to
the accumulator

10000 SSS

(5-bit opcode – 3bits reserved
for a register)

 E.g. The instruction of ADD B is completed by adding code

of the register
 Add 10000

 Register B 000

 To A Implicit
 Binary instruction 10000 000 = 80H

 ADD Reg. B

 In assembly language it is expressed as

Opcode Operand Hex Code
ADD B 80H

Function Operation Code

Move (copy) contents of register
Rs(source) to register Rd (Destination)

01 DDD SSS
2-bit opcode for move, Reg. Rd and
Reg. Rs

 70

 Adding codes of two registers completes the instruction.

Move (copy) the content 01
To register C 001 (DDD)
From register A 111 (SSS)

Binary instruction 01 001 111 = 4FH

 Opcode operand

 In assembly language it is expressed as

Opcode Operand Hex Code
MOV C, A 4FH

Data Format

 In 8-bit microprocessor systems, commonly used codes and
data formats are

 ASCII code

 BCD code

 Signed integers

 Unsigned integers

Addressing Modes

 To perform any operation, we have to give the
corresponding instructions to the microprocessor.

 In each instruction, programmer has to specify 3 things:
o Operation to be performed.
o Address of source of data.
o Address of destination of result.

 The method by which the address of source of data or the
address of destination of result is given in the instruction is
called Addressing Modes.

 The term addressing mode refers to the way in which the
operand of the instruction is specified.

Types of Addressing Modes
 Intel 8085 uses the following addressing modes:

1. Direct Addressing Mode
2. Register Addressing Mode
3. Register Indirect Addressing Mode
4. Immediate Addressing Mode
5. Implicit Addressing Mode

 71

Direct Addressing Mode
 In this mode, the address of the operand is given in the

instruction itself.
 Eg. LDA 2500 H Load the contents of memory location 2500

H in accumulator.
o LDA is the operation.
o 2500 H is the address of source.
o Accumulator is the destination.

Register Addressing Mode
 In this mode, the operand is in general purpose register.
 Eg. MOV A, B Move the contents of register B to A.

o MOV is the operation.
o B is the source of data.

A is the destination.

Register Indirect Addressing Mode
 In this mode, the address of operand is specified by a

register pair.
 Mov A, M Move data from memory location specified by H-L

pair to accumulator.
o MOV is the operation.
o M is the memory location specified by H-L register

pair.
o A is the destination.

Immediate Addressing Mode
 In this mode, the operand is specified within the instruction

itself.
 Eg. MVI A, 05H Move 05 H in accumulator.

o MVI is the operation.
o 05 H is the immediate data (source).
o A is the destination.

Implicit Addressing Mode
 If address of source of data as well as address of destination

of result is fixed, then there is no need to give any operand
along with the instruction.

 Eg. CMA Complement Accumulator
o CMA is the operation.
o A is the source.
o A is the destination.

6.4 OVERVIEW OF 8085 INSTRUCTION SET

 The following are the notations used to describe the
instructions

 72

R= 8085 8-bit register (A, B, C, D, E, H, L)
M= Memory register (location)
Rs = Register source
Rd = Register destination (A, B, C, D, E, H, L)
Rp = Register pair (BC, DE, HL, SP)
() = Contents of

 Data transfer instructions:
These instruction perform six operations

1. Load an 8-bit number in register
2. Copy from register to register
3. Copy between I/O and accumulator
4. Load 16-bit number in a register
5. Copy between register and memory
6. Copy between register and stack memory

Mnemonics Examples Operation

MVI R, 8-bit MVI B,4FH Load 8-bit data in a register

MOV Rd, Rs MOV B,A Copy data from source register
Rs to destination register Rd

LXI Rp, 16-bit LXI B,2050H Load 16-bit number in a register
pair.

OUT 8-bit (port
address)

OUT 01H Send(write) data byte from the
accumulator to an output
device.

IN 8-bit (port
address)

IN 07H Accept(read) data byte from an
input device and place it in
accumulator.

LDA 16-bit LDA 2050H Copy data byte into A from
memory specified by 16-bit
address.

STA 16-bit STA 2070H Copy data byte from A into the
memory specified by 16-bit
address.

LDAX Rp LDAX B Copy the data byte into A from
the memory specified by the
address in the register pair.

STAX Rp STAX D Copy the data byte from A into
the memory specified by the
address in register pair.

MOV Rd, M MOV B, M Copy the data byte into
destination register from the
memory specified by the

 73

address in HL register.

MOV M, Rs MOV M, C Copy the data byte from the
source register into memory
specified by the address in HL
register.

 Arithmetic Instructions:

The frequently used arithmetic operations are:
1. Add
2. Subtract
3. Increment (Add 1)
4. Decrement (Subtract 1)

 Mnemonics
Examples

Operation

ADD R ADD B Add the contents of a register to
the register to the contents of A

ADI 8-bit ADI 37H Add 8-bit data to the contents of
A

ADD M ADD M Add the contents of memory to
A; the address of memory is in
HL register.

SUB R SUB C
Subtract the contents of register
from the contents of A.

SUI 8-bit SUI 7FH
Subtract 8-bit data from the
contents of A

SUB M SUB M
Subtract the contents of
memory from A; the address of
memory is in HL register.

INR R INR D
Increment the contents of
register.

INR M INR M
Increment the contents of
memory, the address of which
is in HL.

DCR R DCR E
Decrement the contents of a
register.

DCR M DCR M
Decrement the contents of a
memory, the address of which
is in HL.

INX Rp INX H
Increment the contents of a
register pair.

DCX Rp DCX B
Decrement the contents of a
register pair.

 Logic and Bit Manipulation Instructions:

These instructions include the following operations:

 74

1. AND
2. OR
3. X-OR(Exclusive OR)
4. Compare
5. Rotate Bits

Mnemonics Examples Operation

ANA R ANA B Logically AND the contents of a register
with the contents of A.

Mnemonics Examples Operation

ANI 8-bit ANI 2FH Logically AND 8-bit data with the
contents of A.

ANA M ANA M Logically AND the contents of memory
with the contents of A; the address of
memory is in HL register

ORA R ORA E Logically OR the contents of a register
with the contents of A

ORI 8-bit ORI 3FH Logically OR 8-bit data with the
contents of A

ORA M ORA M Logically OR the contents of memory
with the contents of A; the address of
memory is in HL register.

XRA R XRA B Exclusive OR the contents of a register
with the contents of A

XRI 8-bit XRI 6AH Exclusive OR 8-bit data with the
contents of A

XRA M XRA M Exclusive OR the contents of memory
with the contents of A; the address of
memory are in HL register.

CMP R CMP B Compare the contents of register with
the contents of A for less than, equal to,
or greater than

CPI 8-bit CPI 4FH Compare 8-bit data with the contents of
A for less than, equal to, or greater than

 Branch Instructions:
 The following instruction changes the program sequence.

Mnemonics Examples Operation

JMP 16-bit JMP Change the program sequence to the

 75

address 2050H specified 16-bit address.

JZ 16-bit
address

JZ 2080H Change the program sequence to the
specified 16-bit address if the Zero
flag is set.

JNZ 16-bit
address

JNZ
2070H

Change the program sequence to the
specified 16-bit address if Zero flag is
reset.

JC 16-bit
address

JC 2025H Change the program sequence to the
specified 16-bit address if the Carry
flag is set.

JNC 16-bit
address

JNC
2030H

Change the program sequence to the
specified 16-bit address if the Carry
flag is set.

CALL 16-bit
address

CALL
2075H

Change the program sequence to the
location of a subroutine.

RET RET Return to the calling program after
completing the subroutine sequence

 Machine Control Instructions:

These instructions affect the operation of the processor

Mnemonics Examples Operation

HLT HLT Stop processing and wait

NOP NOP Do not perform any operation

Exercise

1. What is an instruction set?
2. Give the functional categories of 8085 microinstructions.
3. Define Opcode and operand.
4. Define the types of branching operations.
5. Define one byte/two byte/three byte instruction with one

example.
6. What is the machine control operations used in 8085

microprocessor?
7. What is data transfer instructions?
8. What are the notations used in the 8085 instructions?
9. Give the classification of Instruction set.
10. Explain with the help of a diagram 8085 programming model.
11. Explain various register used in 8085 microprocessor.
12. Explain various addressing modes used in 8085

microprocessor.

 76

References

Computer System Architecture – M. Morris Meno, PHI, 1998

Computer Architecture and Organization - John P Hayes, McGraw
Hill, 1998

Digital Computer Fundamentals – Malvino

Digital Computer Fundamentals – Thomas C Bartee, TMG

Computer Organization and Architecture – William Stallings

Microprocessor Architecture and Programming and Applications
with the 8085 – R.S. Gaonkar, PRI



 77

7

8085 PROGRAMS

List of Programs covered:

7.1 To add two 8-bit data

7.2 To add two 8-bit data present in the memory

7.3 To add two 16-bit data

7.4 To subtract two 16-bit data

7.5 To add two 2-digit BCD data

7.6 To add two 4-digit BCD data

7.7 To multiply two numbers of 8-bit data

7.8 To multiply two numbers of 16-bit data

7.9 To divide two numbers of 8-bit data

7.10 To add an array of data

7.11 To search smallest data in the array

7.12 To search largest data in the array

7.13 To sort an array of data in ascending order

7.14 To sort an array of data in descending order

7.15 To find the square root of an 8-bit binary number

7.16 To convert 2 digit BCD to binary number

7.17 To convert 8-bit binary number to BCD

7.18 To convert 8-bit binary to ASCII

7.19 To convert ASCII code to binary value

7.20Transfer a block of data from one location to another

7.1 TO ADD TWO 8-BIT DATA

 LDA 0000

 MOV B,A

 LDA 0001

 MVI C,00

 ADD B

 78

 JNC AHEAD

 INR C

[LAB1] STA 0002

 MOV A,C

 STA 0003

 HLT

Here, 0000 -> 1st Operand 0001 -> 2nd Operand

0003 -> Sum 0004 -> Carry

7.2 TO ADD TWO 8-BIT DATA PRESENT IN THE
MEMORY

 LXI H,0000

 MVI C,00

 MOV A,M

 INX H

 ADD M

 JNC LAB1

 INR C

[LAB1] INX H

 MOV M,A

 INX H

 MOV M,C

 HLT

Here, 0000 -> 1st Operand 0001 -> 2nd Operand

 0003 -> Sum 0004 -> Carry

7.3 TO ADD TWO 16-BIT DATA

 LHLD 0000

 XCHG

 LHLD 0002

 XRA A

 DAD D

 79

 JNC LAB1

 INR A

[LAB1] SHLD 0004

 STA 0006

 HLT

Here, 0000 & 0001 -> 1st Operand 0002& 0003 -> 2nd Operand

0004 & 0005 -> Sum 0006 -> Carry

7.4 TO SUBTRACT TWO 16-BIT DATA

 LDA 0002

 MOV B,A

 LDA 0000

 SUB B

 STA 0004

 LDA 0003

 MOV B,A

 LDA 0001

 SBB

 STA 0005

 HLT

Here, 0000 & 0001 -> 1st Operand 0002& 0003 -> 2nd Operand

0004 & 0005 -> Subtracted Result

7.5 TO ADD TWO 2-DIGIT BCD DATA

 LDA 0000

 MOV B,A

 LDA 0001

 MIV C,00

 ADD D

 DAA

 80

 JNC LAB1

 INR C

[LAB1] STA 0002

 MOV A,C

 STA 0003

 HLT

Here, 0000 -> 1st Operand 0001 -> 2nd Operand

0002 -> Sum 0003 -> Carry

7.6 TO ADD TWO 4-DIGIT BCD DATA

 LDA 0000

 MOV B,A

 LDA 0002

 MVI C,00

 ADD B

 DAA

 STA 0004

 LDA 0001

 MOV B,A

 LDA 0003

 ADC B

 DAA

 STA 0005

 JNC GO

 INR C

[GO] MOV A,C

 STA 0006

 HLT

Here, 0000 & 0001 -> 1st Operand 0002& 0003 -> 2nd Operand

 0004 & 0005 -> Sum 0006 -> Carry

7.7 TO MULTIPLY TWO NUMBERS OF 8-BIT DATA

 81

 LXI H,00

 MVI C,00

 XRA A

 MOV B,M

 INX H

 MOV D,M

 [REPT] ADD D

 JNC GO

 INR C

[GO] DCR B

 JNZ REPT

 INX H

 MOV M,A

 INX H

 MOV M,C

 HLT

Here, 0000 -> 1st Operand 0001 -> 2nd Operand

0002 -> Sum 0003 -> Carry

7.8 TO MULTIPLY TWO NUMBERS OF 16-BIT DATA

 LHLD 0000

 SPHL

 LHLD 0002

 XCHG

 LXI H,0000

 LXI B,0000

[NEXT] DAD SP

 JNC AHED

 INX B

[AHED] DCX D

 MOV A,E

 ORA D

 82

 JNZ NEXT

 SHLD 0004

 MOV L,C

 MOV H,B

 SHLD 0006

 HLT

Here, 0000 & 0001 -> 1st Operand 0002& 0003 -> 2nd Operand

0004 -> 1st byte of Product

0005 -> 2nd byte of Product

0006 -> 3rd byte of Product

0007 -> 4th byte of Product

7.9 TO DIVIDE TWO NUMBERS OF 8-BIT DATA

 LDA 0001

 MOV B,A

 LDA 0000

 MVI C,00

[AGO] CMP B

 JC STORE

 SUB B

 INR C

 JMP AGO

[STO] STA 0003

 MOV A,C

 STA 0002

 HLT

Here, 0000 -> Dividend 0001 -> Divisor

 0002 -> Quotient 0003 -> Remainder

 83

7.10 TO ADD AN ARRAY OF DATA

 LXI H,0000

 MOV B,M

 MVI C,00

 XRA A

 [REPT] INX H

 ADD M

 JNC AH1

 INR C

[AH1] DCR B

 JNZ REPT

 STA 1000

 MOV A,C

 STA 1001

 HLT

Here, 0000 -> No. of data to be added (n). Data are taken from next

 „n‟ consecutive memory locations.

1000 -> 1st byte of sum

1001 -> 2nd byte of sum

7.11 TO SEARCH SMALLEST DATA IN THE ARRAY

 LXI H,0000

 MOV B,M

 INX H

 MOV A,M

 DCR B

 [LOOP] INX H

 CMP M

 JC AHED

 MOV A,M

[AHD] DCR B

 84

 JNZ LOOP

 STA 1000

 HLT

Here, 0000 -> No. of data(n). Data are taken from next 'n'

 consecutive memory locations.

1000 ->Smallest element

7.12 TO SEARCH LARGEST DATA IN THE ARRAY

 LXI H,0000

 MOV B,M

 INX H

 MOV A,M

 DCR B

[LOOP] INX H

 CMP M

 JNC AHED

 MOV A,M

[AHED] DCR B

 JNZ LOOP

 STA 1000

 HLT

Here, 0000 -> No. of data(n). Data are taken from next 'n'

 consecutive memory locations.

1000 ->Largest element

7.13 TO SORT AN ARRAY OF DATA IN ASCENDING
ORDER

 LDA 0000

 MOV B,A

 DCR B

[LOP2] LXI H,1000

 MOV C,M

 85

 DCR C

[LOP1] INX H

 MOV A,M

 INX H

 CMP M

 JC AHD1

 MOV D,M

 MOV M,A

 DCX H

 MOV M,D

 JMP AHED

[AHD1] DCX H

[AHED] DCR C

 JNZ LOP1

 DCR B

 JNZ LOP2

 HLT

Here, 0000 -> No. of data (n). Data are taken from next

 „n‟ consecutive memory locations.

Sorted data present in the same memory location.

7.14 TO SORT AN ARRAY OF DATA IN DESCENDING
ORDER

 LDA 0000

 MOV B,A

 DCR B

[LOP2] LXI H,1000

 MOV C,M

 DCR C

[LOP1] INX H

 MOV A,M

 INX H

 CMP M

 86

 JNC AHD1

 MOV D,M

 MOV M,A

 DCX H

 MOV M,D

 JMP AHED

[AHD1] DCX H

[AHED] DCR C

 JNZ LOP1

 DCR B

 JNZ LOP2

 HLT

Here, 0000 -> No. of data (n). Data are taken from next

 „n‟ consecutive memory locations.

Sorted data present in the same memory location.

7.15 TO FIND THE SQUARE ROOT OF AN 8-BIT
BINARY NUMBER

 LDA 0000

 MOV B,A

 MVI C,02

 CALL DIV

 [REPT] MOV E,D

 MOV A,M

 MOV C,D

 CALL DIV

 MOV A,D

 ADD E

 MVI C,02

 CALL DIV

 MOV A,E

 CMP D

 JNZ REPT

 87

 STA 0001

 HLT

[DIV] MOV D,00

 [NEXT] SUB C

 INR D

 CMP C

 JNC NEXT

 RET

Here, 0000 -> data 0001 -> Square root of data

7.16 TO CONVERT 2 DIGIT BCD TO BINARY
NUMBER

 LDA 0000

 MOV E,A

 ANI F0

 RLC

 RLC

 RLC

 RLC

 MOV B,A

 XRA A

 MVI C,0A

 [REPT] ADD B

 DCR C

 JNZ REPT

 MOV B,A

 MOV A,E

 ANI 0F

 ADD B

 STA 1000

 HLT

Here, 0000 -> BCD data 1000 -> Binary data (result)

 88

7.17 TO CONVERT 8-BIT BINARY NUMBER TO BCD

 MVI E,00

 MOV D,E

 LDA 0000

 [HUND] CPI 64

 JC TEN

 SUI 64

 INR E

 JMP HUND

[TEN] CPI 0A

 JC UNIT

 SUI 0A

 INR D

 JMP TEN

 [UNIT] MOV C,A

 MOV A,D

 RLC

 RLC

 RLC

 RLC

 ADD C

 STA 2500

 MOV A,E

 STA 2501

 HLT

Here, 0000 -> Binary data

 2500 -> Ten's and Units's digit

 2501 -> Hundred's digit

7.18 TO CONVERT 8-BIT BINARY TO ASCII

 LDA 0000

 MOV B,A

 89

 ANI 0F

 CALL CODE

 STA 0001

 MOV A,B

 ANI F0

 RLC

 RLC

 RLC

 RLC

 CALL CODE

 STA 0002

 HLT

 [CODE] CPI 0A

 JC SKIP

 ADI 07

 [SKIP] ADI 30

 RET

Here, 000 ->Hexa data

 0001 -> ASCII Code of LSB of data

 0002 -> ASCII Code of MSB of data

7.19 TO CONVERT ASCII CODE TO BINARY VALUE

 LXI H,0000

 MOV D,M

 LXI B,1000

 [LOOP] INX H

 MOV A,M

 CALL BIN

 STAX B

 INX B

 DCR D

 JNZ LOOP

 HLT

 90

[BIN] SUI 30

 CPI 0A

 RC

 SUI 07

 RET

Here, 0000 -> No. of data (n). Data (ASCII) are taken from next

 „n‟ consecutive memory locations.

 (HL register pair points to source memory)

 1000 -> Result starting from this memory location

 (BC register pair points to destination memory)

7.20 TRANSFER A BLOCK OF DATA FROM ONE
LOCATION TO ANOTHER

MVI D, 0AH

LXI H, D000H

LXI B, D100H

NEXT: MOV A, M

 STAX B

 INX H

 INX B

 DCR D

 JNZ NEXT

 HLT

Here, before the execution, the ten data bytes must be stored from

memory location D000H. After the execution, the contents of

source block will be transferred to destination block starting from

D100H.

Exercise:

1. To find GCD of two numbers

2. To find LCM of two numbers

3. To swap block of data.

 91

References

Computer System Architecture – M. Morris Meno, PHI, 1998

Computer Architecture and Organization - John P Hayes, McGraw
Hill, 1998

Digital Computer Fundamentals – Malvino

Digital Computer Fundamentals – Thomas C Bartee, TMG

Computer Organization and Architecture – William Stallings

Microprocessor Architecture and Programming and Applications
with the 8085 – R.S.Gaonkar, PRI



 92

8

INTRODUCTION TO MODERN DAY
COMPUTER SYSTEMS

Topics Covered:

8.1 Introduction

8.2 Hardware

8.3 Processor

8.4 Bus System

8.5 PCI (Peripheral Component Interface) Bus

8.1 INTRODUCTION

 A computer system is made up of both hardware and
software.

 Software is another term for computer program.

 Software controls the computer and makes it do useful work.
Without software a computer is useless, like to a car without
someone to drive it.

 Hardware refers to the physical components that make up a
computer system.

 These include the computer's processor, memory, monitor,
keyboard, mouse, disk drive, printer and so on.

8.2 HARDWARE

 The hardware of a computer system is made up of a number
of electronic devices connected together. Figures 8.1 and
8.1A are block diagrams of a typical computer system.

 93

Figure 8.1: Typical computer system

Figure 8.1A: Typical computer system: Processor and Memory
(RAM)

 A computer has two major internal components, namely its
processor and its memory.

 There will also be a power supply unit (not shown) to provide
power for the system.

Printer

Phone

Soket

Modem

Speaker

Mouse

CD-Rom

Tape

Unit

Desk Unit

Monitor

and

Keyboard

 94

 The term device is used to describe any piece of hardware
that we connect to a computer such as a keyboard, monitor,
disk drive, printer and so on.

 Such devices are also sometimes described as peripheral
devices or simply peripherals.

 They may be classified as input/output (I/O) devices and
storage devices.

 As the name suggests, I/O devices are responsible for
communicating with the computer, providing input for the
computer to process and arranging to display output for
computer users.

 The keyboard and mouse are commonly used input devices.
The monitor is the commonest output device, followed by the
printer for hardcopy (permanent) output.

 Storage devices are used to store information in a computer
system.

 The memory is used to store information inside the computer
while the computer is switched on.

 Disk storage is the commonest form of external storage,
followed by the tape storage.

 External storage devices can store information indefinitely or
more realistically, for some number of years.

 A very important component of a computer system is the
system bus. This is used to transfer information between all
system components.

 It is crucial to understand that all information is represented
inside a computer system in binary form i.e. using the binary
numbers 1 and 0.

 The hardware of a computer system has no other way of
representing information.

 Thus when you press a key on a computer's keyboard, a

binary number (code) which represents the symbol on that
key is transmitted to the computer and not the symbol itself,
for example, 'A', displayed on the key.

 Similarly, when a computer transmits a character to be
displayed on the monitor, it is the binary code representing
that character that is sent to the monitor.

 The monitor hardware takes this binary code and displays
the corresponding symbol on the screen.

 To reiterate, all information is transmitted and manipulated
inside a computer system in the form of binary numbers.

 95

 A binary digit (1 or 0) is called a bit and a group of 8 bits is
called a byte.

 When describing storage capacity, the byte and multiples of
bytes are the units used. A kilobyte (Kb) is 210 (1024) bytes,
a megabyte (Mb) is 220 bytes (1024Kb), a gigabyte (Gb) is
230 bytes (1024Mb) and a terabyte (Tb) is 240 bytes
(1024Gb).

 When describing transmission speeds, the number of bits
per second (bps) is the unit used.

 A typical modem can handle speeds of up to 56 Kbps i.e 56
kilo bits per second or approx 56,000 bps.

8.3 THE PROCESSOR

 The processor as its name suggests is the unit that does the
work of the computer system i.e. it executes computer
programs.

 Software is composed of instructions, which are executed
(obeyed) by the processor.

 These instructions tell the processor when and what to read
from a keyboard; what to display on a screen; what to store
and retrieve from a disk drive and so on.

 A computer program is a set of such instructions that carries
out a meaningful task. It is worth remembering at this stage
that the processor can only perform a limited range of
operations.

 It can do arithmetic, compare numbers and perform
input/output (read information and display or store it).

 It is instructive to bear in mind that all computer programs
are constructed from sequences of instructions based on
such primitive operations.

 The processor itself is made up of a number of components
such as the arithmetic logic unit (ALU) and the control unit
(CU).

 The ALU carries out arithmetic operations (e.g. addition and
subtraction) and logical operations (e.g. and, or xor) while
the CU controls the execution of instructions.

 Traditionally, the processor is referred to as the central
processing unit or CPU.

 With the advent of microprocessors, the term MPU or
microprocessor unit is also used.

 96

 A microprocessor is simply a processor contained on a
single silicon chip.

 In addition to the ALU and CU, the processor has a small
number (usually less than 100) of storage locations to store
information that is currently being processed.

 These locations are called registers and depending on the
processor, a register may typically store 8, 16, 32 or 64 bits.

 The register size of a particular processor allows us to
classify the processor. Processors with a register size of n-
bits are called n-bit processors, so that processors with 8-bit
registers are called 8-bit processors, similarly there are 16-
bit, 32-bit and 64-bit processors.

 An n-bit processor is said to have an n-bit word size so a 32-
bit processor has a 32-bit word size.

 The greater the number of bits the more powerful the
processor is, since it will be able to process a larger unit of
information in a single operation.

 For example, a 32-bit processor will be able to add two 32-
bit numbers in a single operation whereas an 8-bit processor
will only be able to add two 8-bit numbers in a single
operation.

 An n-bit processor will usually be capable of transferring n-
bits to or from memory in a single operation. This number of
bits is also referred to as the memory word size.

 So, while a byte refers to an 8-bit quantity, a word can mean
8, 16, 32, 64 or some other number of bits.

 On some machines a word is taken to mean a 16-bit quantity
and the term long word is used to refer to a 32-bit quantity.

 An alternative method of classifying a processor is to use the
width of the data bus, in which case an n-bit processor
describes one operating with a data bus of n-bits.

 This means that the CPU can transfer n-bits to another
device in a single operation.

 Using this classification, the Intel 8088 microprocessor is an
8-bit processor since it uses an 8-bit data bus, although its
CPU registers are in fact 16-bit registers. Similarly the
Motorola 68000 is classified as a 16-bit processor, even
though its CPU registers are 32-bit registers. Sometimes a
combination of the two classifications is used where the
8088 might be described as 8/16-bit processor and the
Motorola 68000 as a 16/32-bit processor.

 97

 The data bus width is very important in a computer system,
since it determines the amount of information that can be
transferred to or from the CPU, in a single operation.

 This means, for example, that the Motorola 68000 would
have to transfer two 16-bit items to the CPU to fill a 32-bit
register, since the data bus width is 16-bits.

 I/O devices and memory operate at very slow speeds
compared to the speed of the CPU. As a result, the CPU is
frequently delayed by these slower devices, waiting for
information to be transferred along the data bus.

 So, the more information we can transfer in a single
operation, between an I/O devices and the CPU, the less
time the CPU will spend waiting for information to process.
This in turns means that we should strive to have the data
bus as wide as possible.

 An important component not shown in Figure 8.1 is the CPU
clock.

 The clock controls the rate at which activities are carried out
by the CPU.

 It generate a stream of cycles or ticks and an action can only
be carried out on the occurrence of a clock tick.

 Obviously, the more cycles per second, the more actions
that the CPU can carry out.

 The speed of the clock is measured in millions of cycles per
second.

 One cycle per second is one Hertz (Hz), a kilohertz (KHz) is
1000Hz, a megahertz (MHz) is 1000 KHz and a gigahertz is
1000 MHz. Currently, PCs are being marketed with clock
rates range from 2 to 4 GHz and the rate continues to
increase.

Bus System

 The processor must be able to communicate with all
devices.

 They are connected together by a communications channel
called a bus.

 A bus is composed of a set of communication lines or wires.

 A simple bus configuration is shown Figure 8.2.

 We refer to this bus as the system bus as it connects the
various components in a computer system.

 98

 Internally, the CPU has a CPU bus for transferring
information between its components (e.g. the control unit,
the ALU and the registers).

Figure 8.2: The system bus: the processor communicates with
all devices via the system bus

 Information is transferred from one device to another on the
bus.

 For example, information keyed in at the keyboard is passed
along the bus to the processor.

 The processor executes programs made up of instructions,
which are stored in the computer‟s memory.

 These instructions are transferred to the processor using the
bus.

 As indicated in Figure 8.2, the lines of the bus may be
classified into 3 groups.

 One group of lines, the data lines, is used to carry the actual
data along the bus from one device to another.

 A second group of lines, the address lines, allow the CPU to
specify where the data is going to or coming from i.e. which
memory location is to be accessed or which I/O device is to
be used.

 The third group of lines, the control lines, carries control
signals that allow the CPU control the transfer of information
along the bus.

 For example, the CPU must be able to indicate whether
information is to be transferred from memory or to memory; it
must be able to signal when to start the transfer and so on.
We will refer to these groups of lines as separate buses, so
we refer to the data bus, address bus and control bus as
separate entities.

 99

 It is important to realise that a computer system may have a
number of separate bus systems so that information can be
transferred between more than one pair of components at
the same time.

 For example, it is common to have one bus for
communicating between memory and the CPU at high
speeds.

 This bus is called a CPU-memory bus.

 In addition, this bus would be connected to a second I/O bus
via a bus adapter, as illustrated in Figure 8.3.

 This second bus would be used for the slower I/O devices.

Main

Processor

 Memory

 CPU - Memory Bus

 Bus Adapter

I/O Bus

 I/O I/O I/O

controller

 controller controller

Figure 8.3: CPU-memory bus and I/O bus

 This allows the processor more efficient access to
memory, as the CPU-memory bus can operate at very high
speeds.

 These high speeds are only possible, if the physical bus
length is quite short.

 Thus, by providing a second I/O bus to accommodate the
various I/O devices that may be connected to the
computer, the length of the CPU-memory bus can be kept
shorter than it would be if the I/O devices were to be
directly attached to a single system bus.

 On the other hand, to keep the cost of a computer system
low, a single bus running at a slower speed, may be used
to connect all devices to the CPU.

 In order to attach any device to a computer, it must be
connected to the computer‟s bus system.

 100

 This means that we need a unit that connects the device to
the bus.

 The terms device controller and device interface are used
to refer to such a unit.

 So, for example, a disk controller would be used to connect
a disk drive to the system bus and the term I/O controller
refers to the controller for any I/O device to be connected
to the bus system.

 A computer system will have some standard interfaces
such as a serial interface, which can be used with a
number of different I/O devices.

 The serial interface, for example, can be used to attach a
printer, a mouse or a modem (device for communications
over a telephone line) to the computer.

8.4 PCI (PERIPHERAL COMPONENT INTERFACE)

BUS

 The PCI bus was developed in the early 1990‟s by a group
of companies with a goal to advance the interface allowing
OEM‟s or users to upgrade the I/O (Input-Output) of personal
computers.

 The PCI bus has proven a huge success and has been
adopted in almost every PC and Server since.

 The latest advancement of the PCI bus is PCI-X. PCI-X is a
64-bit parallel interface that runs at 133 MHz enabling 1GB/s
(8 GB/s) of bandwidth.

 Though other advancements are in the works, including
DDR, or the PCI bus, they are perceived as falling short.

 They are too expensive (too many pins in the 64-bit
versions) for the PC industry to implement in the mass
volumes of PCs and that they do not offer sufficient
bandwidth and advanced feature set required for the servers
of the future.

 Many would argue that there is no need to advance the
bandwidth of PCI on PCs since few I/O cards are taxing the
250 to 500 MB/s bandwidth that is currently available. This is
not the case for Servers.

 High performance servers are frequently equipped with
clustering, communication and storage I/O cards that
together tax the bandwidth of the PCI-X bus.

 101

 Another key limitation of PCI-X is that it can support only one
slot per controller, which means that multiple controllers (and
their expense) are needed on each server.

Features of PCI Bus

 Speed: The basic PCI protocol can transfer up to 132
Mbytes per second, well over an order of magnitude faster
than other buses.

 Configurability: PCI offers the ability to configure a system
automatically, relieving the user of the task of system
configuration.

 Multiple Masters: Prior to PCI, most buses supported only
one “master”, the processor. High bandwidth devices could
have direct access to memory through a mechanism called
DMA (Direct Memory Access) but devices, in general, could
not talk to each other. In PCI, any device has the potential to
take control of the bus and initiate transactions with any
other device.

 Reliability: “Hot Plug” and “Hot Swap”, defined respectively
for PCI and compact PCI, offer the ability to replace modules
without disrupting a system‟s operation. This sustainability
reduces MTTR (Mean Time to Repair) to yield the necessary
degree of up-time required of mission-critical systems such
as the telephone network.

 The transfer protocol is optimized around transferring blocks
of data. A single transfer is just a block transfer with a length
of one.

 Although PCI is officially processor-independent, it inevitably
reflects its origins with Intel and its primary application in the
PC architecture.

 PCI implements plug and play configurability. Every device
in the system is automatically configured each time the
system is turned on. The configuration protocol supports up
to 256 devices in a system.

 The electrical specifications emphasize low power use
including support for both 3.3 and 5 volt signaling
environments. PCI is a “green” architecture.

System with PCI Bus

 The system with PCI is shown in figure below.

 The “PCI Bridge” connects between the
CPU/Cache/Memory sub system and PCI bus.

 It provides low latency path for the CPU to access any
PCI device mapped into the I/O or memory space.

 102

 It provides path for PCI master to access main memory.

Exercise

Q1. Write a short note on computer system.

Q2. What is a processor?

Q3. Explain the need of bus system.

References

Computer System Architecture – M. Morris Meno, PHI, 1998

Computer Architecture and Organization - John P Hayes, McGraw
Hill, 1998

Digital Computer Fundamentals – Malvino

Digital Computer Fundamentals – Thomas C Bartee, TMG

Computer Organization and Architecture – William Stallings

Microprocessor Architecture and Programming and Applications
with the 8085 – R.S. Gaonkar, PRI







 103

9

COMPUTER MEMORY

Topics Covered:

9.1 Memory

9.2 Cache Memory

9.3 Computer Memory System Overview

9.4 Cache Memory Principles

9.5 Cache Mapping

9.1 MEMORY

 Memory is used to store the information (programs and data)
that the computer is currently using.

 It is sometimes called main or primary memory.
 One form of memory is called RAM -random access

memory. This means that any location in memory may be
accessed in the same amount of time as any other location.

 Memory access means one of two things, either the CPU is
reading from a memory location or the CPU is writing to a
memory location.

 When the CPU reads from a memory location, the contents
of the memory location are copied to a CPU register.

 When the CPU writes to a memory location, the CPU copies
the contents of a CPU register to the memory location,
overwriting the previous contents of the location.

 The CPU cannot carry out any other operations on memory
locations.

 RAM is a form of short term or volatile memory.
 Information stored in short term storage is lost when the

computer is switched off (or when power fails).
 There is therefore a requirement for permanent or long term

storage which is also referred to as secondary storage or
auxiliary storage.

 This role is fulfilled by disk and tape storage.
 RAM consists of a large number of storage locations or cells,

each one capable of storing a small amount of information
typically a single byte. These cells are numbered or
addressed starting at zero, up to some maximum number

 104

determined by the amount of RAM present, as illustrated in
Figure 9.1.

Figure 9.1 Memory Organizations

 PCs typically have 256 Mb to 512Mb of RAM installed, but

the figure is constantly being revised upwards.

 The address of a memory cell is used when we wish to

access that particular memory location.

 This means that we must know the address of a cell in

memory before we can access its contents.

 A byte is a small unit of storage, capable of storing unsigned

numbers in the range 0 to 255.

 In order to allow you store larger quantities in memory, the

hardware allows you treat a number of consecutive cells as

a unit. For example, by using two consecutive cells, 16-bits

are available for storing information giving an unsigned

number range from 0 to 216-1 (65,535). By using 4

consecutive cells, 32 bits are available, allowing numbers in

excess of 1 billion to be manipulated.

 There are two major forms of RAM called static RAM

(SRAM) and dynamic RAM (DRAM).

 SRAM is the more expensive of the two as it is more

complex to manufacture but it is considerably faster to

access than DRAM.

 105

 DRAM has an access time in the range of 20-60

nanoseconds upwards, while SRAM access times range

from 4 or 5 nanoseconds to 20 nanoseconds.

 It is not uncommon for a computer system to have a small

amount of SRAM and a larger volume of DRAM making up

its total RAM capacity.

 The SRAM is used to construct a cache memory which

stores frequently accessed information and so speed up

memory access for the system.

 There are other forms of primary memory such as ROM,

PROM, EPROM EEPROM and flash memory.

 ROM (Read Only Memory) is the same as RAM in so far as

any location can be read from at random, but it cannot be

written to.

 ROM is pre-programmed by the manufacturer and its

contents cannot be changed, hence its name read only.

 This means that ROM is a form of permanent storage.

 However, since the user cannot store information in ROM, its

usefulness is restricted.

 ROM is typically used to store programs and data that are

required to start up (boot) a computer system.

 When a computer is powered on, its RAM will contain no

useful information, but the processor is designed to run

programs that it finds in memory.

 One major use of ROM is to store the initial program used by

the processor when the machine is started.

 Another use of ROM in personal computers, is to store

operating systems subprograms for carrying out I/O and

other activities.

 The term firmware is used for the combination of ROM and

the software stored on it.

 PROM stands for programmable ROM which means that the

memory chip manufacturer provides a form of ROM that can

be programmed via the use of a special hardware device.

 106

 This allows computer system designers place their own

programs on the PROM chip. If their programs do not

operate correctly, the designer can program another PROM

chip, as opposed to getting the memory manufacturer to do

it, as is the case when a designer uses ROM.

 EPROM is a form of ROM that is erasable which means that

the contents of the EPROM chip can be erased in their

entirety and the chip can be reprogrammed (a limited

number of times).

 As in the case of PROM, EPROM can only be programmed

and erased (via exposure to ultra violet light) by a special

hardware device, outside the computer system.

 EEPROM is electrically erasable PROM. EEPROM can be

erased inside a computer system using an electrical current.

Its major advantage is that it does not have to be removed

from the computer system.

9.2 CACHE MEMORY

 Computer memory is organized into a hierarchy.

 At the highest level (closest to the processor) are the
processor registers.

 Next comes one or more levels of cache.

 When multiple levels are used, they are denoted L1, L2,
etc…

 Next comes main memory, which is usually made out of a
dynamic random-access memory (DRAM).

 All of these are considered internal to the computer system.

 The hierarchy continues with external memory, with the next
level typically being a fixed hard disk, and one or more levels
below that consisting of removable media such as ZIP
cartridges, optical disks, and tape.

 As one goes down the memory hierarchy, one finds
decreasing cost/bit, increasing capacity, and slower access
time.

 It would be nice to use only the fastest memory, but because
that is the most expensive memory, we trade off access time
and cost by using more of the slower memory.

 The trick is to organize the data and programs in memory so

 107

that the memory words needed are usually in the fastest
memory.

 In general, it is likely that most future accesses to main
memory by the processor will be to locations recently
accesses.

 So the cache automatically retains a copy of some of the
recently used words from the DRAM.

 If the cache is designed properly, then most of the time the
processor will request memory words that are already in the
cache.

9.3 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

Location

 Processor

 Internal – main memory

 External – secondary memory

Capacity

 Word size – natural unit or organization

 Number of words – number of bytes

Unit of Transfer

 Internal

o Usually governed by bus width

 External

o Usually a block which is much larger than a word

 Addressable unit

o Smallest location which can be uniquely addressed

o Cluster on external disk

Access Methods

 Sequential – tape

o Start at the beginning and read through in order

 108

o Access time depends on location of data and previous
location

 Direct – disk

o Individual blocks have unique address

o Access is by jumping to vicinity plus sequential search

o Access time depends on location of data and previous
location

 Random - RAM

o Individual addresses identify location exactly

o Access time is independent of data location and
previous location

 Associative – cache

o Data is located by a comparison with contents of a
portion of the store

o Access time is independent of data location and
previous location

Performance

 Access time (latency)

o The time between presenting an address and getting
access to valid data

 Memory Cycle time – primarily random-access memory

o Time may be required for the memory to “recover”
before the next access

o Access time plus recovery time

 Transfer rate

o The rate at which data can be transferred into or out
of a memory unit

Physical Types

 Semiconductor – RAM

 Magnetic – disk and tape

 Optical – CD and DVD

 Magneto-optical

Physical Characteristics

 Volatile/non-volatile

 Erasable/non-erasable

 109

 Power requirements

Organization

 The physical arrangement of bits to form words

 The obvious arrangement is not always used

The Memory Hierarchy

How much?

 If the capacity is there, applications will be developed to use
it.

How fast?

 To achieve performance, the memory must be able to
keep up with the processor.

How expensive?

 For a practical system, the cost of memory must be
reasonable in relationship to other components

There is a trade- off among the three key characteristics of
memory: cost, capacity, and access time.

 Faster access time – greater cost per bit

 Greater capacity – smaller cost per bit

 Greater capacity – slower access time

The way out of this dilemma is not to rely on a single memory
component or technology. Employ a memory hierarchy.

 110

Figure 9.2 Memory Hierarchy

 As one goes down the hierarchy: (a) decreasing cost per bit;
(b) increasing capacity; (c) increasing access time; (d) decreasing
frequency of access of the memory by the processor.

 Thus smaller, more expensive, faster memories are
supplemented by larger, cheaper, slower memories. The key to the
success of this organization is item (d).

Locality of Reference principle

 Memory references by the processor, for both data and
instructions, cluster

 Programs contain iterative loops and subroutines - once a loop
or subroutine is entered, there are repeated references to a
small set of instructions

 Operations on tables and arrays involve access to a clustered
set of data word

Cache Memory Principles

Cache memory

 Small amount of fast memory

 Placed between the processor and main memory

 Located either on the processor chip or on a separate
module

 111

Cache Operation Overview

 Processor requests the contents of some memory location

 The cache is checked for the requested data

o If found, the requested word is delivered to the
processor

o If not found, a block of main memory is first read into
the cache, then the requested word is delivered to the
processor

 When a block of data is fetched into the cache to satisfy a
single memory reference, it is likely that there will be future
references to that same memory location or to other words in the
block – locality or reference principle. Each block has a tag added
to identify it.

Figure 9.3

 112

An example of a typical cache organization is shown below :

Figure 9.4

Elements of Cache Design

Cache Size

 Small enough so overall cost/bit is close to that of main
memory.

 Large enough so overall average access time is close to that
of the cache alone.

o Access time = main memory access time plus cache
access time.

 Large caches tend to be slightly slower than small caches.

Cache Mapping

Mapping Function

An algorithm is needed to map main memory blocks into cache
lines. A method is needed to determine which main memory block
occupies a cache line. Three techniques used: direct, associative,
and set associative. Assume the following:

 Cache of 64 Kbytes

 Transfers between main memory and cache are in
blocks of 4 bytes each – cache organized as 16K =
2^14 lines of 4 bytes each

 Main memory of 16 Mbytes, directly addressable by a
24-bit address (where 2^24 = 16M) – main memory
consists of 4M blocks of 4 bytes each

 113

Direct Mapping

 Each block of main memory maps to only one cache line

o “cache line #” = “main memory block #” % “number of
lines in cache”

 Main memory addresses are viewed as three fields

o Least significant w bits identify a unique word or byte
within a block

o Most significant s bits specify one of the 2^s
blocks of main memory Tag field of s-r bits (most
significant)

o Line field of r bits – identifies one of the m = 2^r lines
of the cache

Tag (s-r) Line or Slot (r) Word (w)
8 bits 14 bits 2 bits

 24 bit address

 2 bit word identifier

 22 bit block identifier

 8 bit tag (22-14)

 14 bit slot or line

 No two blocks in the same line have the same Tag field

 Check contents of cache by finding and checking Tag

Direct Mapping Cache Table

Cache Line
Main memory blocks
assigned

0 0, m, 2m, …, 2^s-m
1 1, m+1, 2m+1, …, 2^s-m+1
… …
m-1 m-1, 2m-1, 3m-1, …, 2^s-1

 114

Direct Mapping Cache Organization

Example of Direct Mapping

 115

Direct Mapping Summary

 Address length = (s+w) bits

 Number of addressable units = 2^(s+w) words or bytes

 Block size = line size = 2^w words or bytes

 Number of blocks in main memory = 2^(s+w)/2^w = 2^s

 Number of lines in cache = m = 2^r

 Size of tag = (s-r) bits

Direct Mapping Pros and Cons

 Simple

 Inexpensive

 116

 Fixed location for a given block

o If a program accesses two blocks that map to the same
line repeatedly, then cache misses are very high

Associative Mapping

 A main memory block can be loaded into any line of the
cache

 A memory address is interpreted as a tag and a word field

 The tag field uniquely identifies a block of main memory

 Each cache line‟s tag is examined simultaneously to
determine if a block is in cache

Associative Mapping Cache Organization:

Example of Associative Mapping

 117

 Main memory addresses are viewed as two fields

Tag (s) Word (w)
22 bits 2 bits

 22 bit tag stored with the 32 bit block of data
 Tag field compared with tag entry to check for cache hit

2 bit byte number

Example:

0001 0110 0011 0011 1001 1100

Hex Address: 16339C Binary Address:

Hex Tag: 058CE7 Binary Tag: 0000 0101 1000 1100 1110 0111

Associative Mapping Summary

 118

 Address length = (s+w) bits

 Number of addressable units = 2^(s+w) words or bytes

 Block Size = line size = 2^w words or bytes

 Number of blocks in main memory = 2^(s+w)/2^w = 2^s

 Number of lines in cache = undetermined

 Size of tag = s bits

Associative Mapping Pros and Cons

 Flexibility as to which block to replace when a new block is
read into cache o Replacement algorithms designed to
maximize cache hit ratio

 Complex circuitry required to examine the tags of all cache
lines in parallel

Set Associative Mapping

 Compromise between direct and associative mapping

 Cache divided into v sets

 Each set contains k lines

 A given block maps into any line in a given set

 Ex: block B can be mapped into any line in set i

 Ex: Assume that k = 2 – meaning there are 2 lines per set

2-way associative mapping – k-way mapping

A given block can map into either of the 2 lines in exactly
 1 set

 119

k-Way Set Associative Cache Organization

Example of Set Associative Mapping

 120

Main memory addresses are viewed as two fields

Tag (s-d) Set (d) Word (w)
9 bits 13 bits 2 bits

o 9 bit tag field – only compared with k tags in the given set
o 13 bit set field – specifies one of the v = 2^d sets
o 2 bit byte number

Example:

0001 0110 0011 0011 1001 1100

Hex Address: 16339C Binary Address:

Hex Tag: 02C Binary Tag: 0 0010 1100

Hex Address: 16339C Binary Address: 0001 0110 0011 0011 1001 1100

Hex Set: 0CE7 Binary Set: 0 1100 1110 0111

“cache set #” = “main memory block #” % “number of sets”

Set Associative Mapping Summary

o Address length = (s+w) bits

o Number of addressable units = 2^(s+w) words or bytes

o Block Size = line size = 2^w words or bytes

o Number of blocks in main memory = 2^(s+w)/2^w = 2^s

o Number of lines in set = k

o Number of sets v = 2^d

o Number of lines in cache = kv = k*2^d

o Size of tag = (s-d) bits

o v = m, k = 1 reduces to direct mapping

o v = 1, k = m reduces to associative mapping

o 2-way mapping is most commonly used – significantly
improves cache hit ratio over direct mapping

o 4-way mapping – makes a modest additional improvement
for a relatively small additional cost

Replacement Algorithms

Direct Mapping

o No choice

o Each block only maps to one line

o Must replace that line

 121

Associative and Set Associative

 Must be implemented in hardware for speed

 Most effective – Least Recently Used (LRU)

 Replace the block in the set that has been in cache the
longest with no references to it

o 2-way set associative – each line includes a USE bit

 First-in-first-out (FIFO)

o Replace the block in the set that has been in the
cache the longest

o Uses a round-robin or circular buffer technique

 Least Frequently Used (LFU)

o Replace the block in the set that has experienced the
fewest references

o Associate a counter with each line

 Pick a line at random – not based usage

o Only slightly inferior in performance to algorithms
based on usage

 Write Policy

o What if cache has been altered and main memory
doesn‟t match must write to memory before replacing the
word in cache

o What if multiple processors are present and each one
has its own cache

o What if an I/O device addresses main memory directly

 Write Through

o All writes go to both cache and main memory

o Each processor can monitor main memory activity to
keep local cache current

o Generates a lot of memory traffic

 Write Back

o Minimizes memory writes

o Updates are made only in cache

o UPDATE bit associated with the line is set

o When the block is replaced it is written back to main
memory only if the UPDATE bit is set

o This may cause other caches to be out of sync

o I/O must access main memory through the cache

o 15% of memory references are writes

 122

Exercise

Q1. Explain the usage of memory.

Q2. Explain RAM and ROM.

Q3. Explain different types of ROM.

Q4. Explain the concept of cache memory.

Q5. Explain different characteristics of Memory Systems.

Q6. Explain Cache mapping.

References

Computer System Architecture – M. Morris Meno, PHI, 1998

Computer Architecture and Organization - John P Hayes, McGraw
Hill, 1998

Digital Computer Fundamentals – Malvino

Digital Computer Fundamentals – Thomas C Bartee, TMG

Computer Organization and Architecture – William Stallings

Microprocessor Architecture and Programming and Applications
with the 8085 – R.S. Gaonkar, PRI









 123

10

EXTERNAL MEMORY

Topics Covered:

10.1 Introduction

10.2 Magnetic Disk

10.3 Data Organization and Formatting

10.4 RAID

10.1 INTRODUCTION

 Magnetic disks remain the most important component of
external memory.

 Both removable and fixed, hard disks are used in systems
ranging from personal computers to mainframes and
supercomputers.

 To achieve greater performance and higher availability, a
popular scheme on servers and larger systems is the RAID
disk technology.

 RAID refers to a family of techniques for using multiple disks
as a parallel array of data storage devices, with redundancy
built in to compensate for disk failure.

 Optical storage technology has become increasingly
important in all types of computer systems.

 While CD-ROM has been widely used for many years, more
recent technologies, such as writable CD and DVD, are
becoming increasingly important.

10.2 MAGNETIC DISK

 Circular platter constructed of nonmagnetic material, called
the substrate, coated with a magnetize able material

 Substrate was traditionally aluminum or aluminum alloy
 Substrate now glass

o Improved surface uniformity – increased reliability
o Reduction in surface defects – reduce read/write

errors
o Support lower fly heights
o Greater ability to withstand shock and damage

 124

Magnetic Read and Write Mechanisms

 Data recording and retrieval via a conducting coil named the
head

 Read and write heads may be combined or separate
 Read/write operations – the head is stationary while the

platter rotates beneath it
 Write

o Current flowing through a coil produces a magnetic
field

o Pulses are sent to the head
o Magnetic patterns are recorded on the surface below

 Read (traditional)
o A magnetic field moving relative to a coil produces

current in the coil
o When the surface of the disk passes under the head

current of the same polarity is generated as the one
already recorded

o Structure of the head for reading is essentially the
same as for writing – therefore the same head can be
used

o Such single heads are used in floppy disks and older
rigid disk systems

 Read (contemporary)
o Requires separate read and write heads
o Consists of a partially shielded magneto resistive

(MR) sensor
o Electrical resistance depends on the direction of the

magnetic field
o moving under it
o Resistance changes are detected as voltage signals
o Allows for higher-frequency operation – greater

storage densities and operating speeds

Figure 10.1

 125

10.3 DATA ORGANIZATION AND FORMATTING

 Data is organized on a platter using a set of concentric rings
named tracks

o Each track is the same width as the head
o Adjacent tracks are separated by gaps – minimizes

errors due to misalignment or magnetic field
interference

 Tracks divided into sectors

o Data is transferred to and from disk in sectors –
blocks of sectors

o Adjacent sectors separated by intra track gaps

Disk Velocity

 A bit stored near the center of a rotating disk passes a fixed
point slower than a bit stored near the outside edge of the
disk

 Spacing between bits is increased on the tracks towards the
outside edge

 Constant angular velocity (CAV) – rotating the disk at a fixed
rate

o Sectors are pie shaped and the tracks are concentric
o Individual tracks and sectors can be directly

addressed
o Head is moved to the desired track and then waits for

the desired sector
o Wastes disk space on the outer tracks – lower data

density
 Multiple zone recording

o The number of bits per track is constant
o Zones towards the outer edge contain more bits and

more sectors
o Read and write timing changes form one zone to the

next

o Increased capacity traded for more complex circuitry

 126

Figure 10.2

Locating Sectors

 Must be able to identify the start and end of each sector
 Disk Format

o Marks the start and end of sectors

o Allocates additional space for disk management – not
user accessible

Figure 10.3

Physical Characteristics

 Head Motion
o Fixed head – one per track – heads mounted on fixed

rigid arm
o Movable head – one per surface – heads mounted on

movable arm
 Disk Portability

o Non-removable disk – permanently mounted

 127

 Removable disk – can remove one drive and replace with
another – unlimited storage capacity – easy data transfer
between systems

 Sides
o Single sided – 1 set of heads
o Double sided – 2 sets of heads – most common

 Platters
o Single platter

 Multiple platter – heads joined and aligned – aligned tracks
on each platter form a cylinder – improves transfer rate

 Head Mechanism
 Contact

o Head is in contact with disk medium – floppy disk
 Fixed gap

o Fixed distance air gap between the head and the
platter

 Aerodynamic gap (Winchester)
o Head is an aerodynamic foil – the heads flies above

the platter as it spins

Figure 10.4

Disk Performance Parameters
General timing diagram of disk I/O transfer:

Figure 10.5

 128

 Seek time
o Time it takes to position the head at the desired track

– moveable head system
 Rotational delay

o Time it takes for the beginning of the desire sector to
reach the head

o Floppy disks rotate at a rate between 300 and 600
rpm

o Hard disks rotate at a rate between 3600 and 15000
rpm

 Access time

o Sum of the seek time and the rotational delay
 Transfer time

o Time required for the data transfer

o Dependent on the rotation speed of the disk

10.4 RAID

 Redundant Array of Independent Disks
 Redundant Array of Inexpensive Disks
 7 levels numbered 0 through 6 – does not imply a

hierarchical relationship
 Set of physical disk drives viewed by the OS as a single

logical drive
 Data are distributed across the physical drives of an array
 Redundant disk capacity used to store parity information –

guarantees data Recoverability

RAID Level 0 - Striping

 No redundancy
 Data striped across all disks
 Uses Round Robin striping
 Increase speed

o Multiple data requests found on different disks
o Multiple disks can be seeked in parallel
o A set of data is likely to be striped across multiple

disks

RAID Level 1 - Mirroring

 Mirrored disks
 Data is striped across disks
 2 copies of each stripe exist on 2 separate disks
 Read request handled by either disk – minimum seek plus

rotation latency
 Write requests go to both disks

 129

 Recovery from failure is simple – swap out bad disk and re-
mirror

 Expensive – requires twice the disk space

RAID Level 2 – Parallel access

 Disks are synchronized – heads in same position on every
disk

 Stripes are very small – single byte or word
 Error-correcting code calculated across corresponding bits

on each disk
 Multiple parity disks store the code in corresponding

positions – Hamming code
 Too much redundancy – expensive – overkill so not

implemented

Figure 10.6
RAID Level 3 – Parallel access

 Similar to RAID 2
 Only a single redundant disk – no matter what the array size

is
 Simple parity bit is computed for the set of individual bits in

the same position
 Data on a failed disk reconstructed from surviving data and

parity info
 Very high transfer rates – small stripes yield parallel transfer

from all disks

RAID Level 4 – Independent access

 130

 Each disk operates independently
 High I/O request rates – separate I/O request satisfied in

parallel
 Large stripes are used
 Bit-by-bit parity strip is calculated across corresponding

strips on each disk
 Parity strips stored in the corresponding strip on the parity

disk

 Every write must involve a parity disk – potential I/O
bottleneck

Figure 10.7

RAID Level 5 – Independent access

 Similar to RAID 4

 Distributes the parity strips across all disks

 Uses Round Robin allocation scheme

 Avoids RAID 4 I/O bottleneck

 Commonly used in network servers

RAID Level 6 – Independent access

 Two parity calculations
 Stored in separate blocks on different disks
 Requires N+2 disks – where N is number of disk required for

user data
 Extremely high data availability

o Three disk must fail before loss of data

 131

o Substantial write penalty – affects two parity blocks

Figure 10.8

Data Mapping for a RAID Level 0 Arrays

Figure 10.9

Exercise

Q1. Write a short note on external memory.

 132

Q2. Explain RAID memory with different levels.

References

Computer System Architecture – M. Morris Meno, PHI, 1998

Computer Architecture and Organization - John P Hayes, McGraw
Hill, 1998

Digital Computer Fundamentals – Malvino

Digital Computer Fundamentals – Thomas C Bartee, TMG

Computer Organization and Architecture – William Stallings

Microprocessor Architecture and Programming and Applications
with the 8085 – R.S. Gaonkar, PRI



 133

11

THE 8051 MICROCONTROLLER

Topics Covered:

11.1 Introduction

11.2 History

11.3 The8051 Microcontroller Hardware

11.4 The8051 Microcontroller Architecture

11.5 MemoryOrganisation

11.6 Summary

11.7 Review Questions

11.8 Reference

11.0 OBJECTIVES

After studying this chapter you should be able to

 Describe the hardware features of the 8051 microcontroller.

 List the internal registers of the 8051 microcontroller and their
functions.

 Understand the memory organization in 8051 microcontroller.

11.1 INTRODUCTION

Despite it‟s relatively old age, the 8051 isone of the most

popular microcontrollers in usetoday. Many derivative
microcontrollers have sincebeen developed that are based
onandcompatible withthe 8051. Thus, the ability toprogram an 8051
is an important skill for anyonewho plans to develop products that
will takeadvantage of microcontrollers.

A microcontroller is an integrated circuit or a chip with a

processor and other support devices like program memory, data
memory, I/O ports, serial communication interface etc integrated
together. Unlike a microprocessor (ex: Intel 8085), a microcontroller
does not require any external interfacing of support devices. Intel
8051 is the most popular microcontroller ever produced in the world
market.

 134

11.2 HISTORY

Intel, first produced a microcontroller in 1976 under the

name MCS-48, which is an 8 bit microcontroller. Later in 1980 they
released a further improved version (which is also 8 bit), under the
name MCS-51. The most popular microcontroller 8051 belongs to
the MCS-51 family of microcontrollers by Intel. Following the
success of 8051, many other semiconductor manufacturers
released microcontrollers under their own brand name but using the
MCS-51 core. Global companies and giants in semiconductor
industry like Microchip, Zilog, Atmel, Philips, Siemens released
products under their brand name. The specialty was that all these
devices could be programmed using the same MCS-51 instruction
sets. They basically differed in support device configurations like
improved memory, presence of an ADC or DAC etc.

11.2.1 8051 Family

Intel fabricated the original 8051 which is known as MCS-
51. The other two members of the 8051 family are:

I] 8052 – This microcontroller has 256 bytes of RAM and 3
timers. In addition to the standard features of 8051, this
microcontroller has an added 128 bytes of RAM and timer. It has
8K bytes of on chip program ROM. The programs written for
projects using 8051 microcontroller can be used to run on the
projects using 8052 microcontroller as 8051 is a subset of 8052.

II] 8031 – This microcontroller has all the features of 8051 except
for it to be ROM-less. An external ROM that can be as large as 64
K bytes should be programmed and added to this chip for
execution. The disadvantage of adding external ROM is that 2 ports
(out of the 4 ports) are used. Hence, only 2 ports are left for I/O
operations which can also be added externally if required for
execution.

Comparison of 8051 family members:

Features 8051 8052 8031

RAM(bytes) 128 256 128

ROM 4K 8K 0K

Timers 2 3 2

Serial port 1 1 1

I/O pins 32 32 32

Interrupt sources 6 8 6

 135

11.3 THE 8051 MICROCONTROLLER HARDWARE

 In this chapter, we will study a “generic” 8051 housed in a
40- pin DIP. The block diagram of the 8051 in figure 1 shows all of
the features unique to microcontrollers.

 Internal ROM and RAM

 I/O ports with programmable pins.

 Timers and counters.

 Serial data communication.

Fig. 1 Block Diagram of 8051 microcontroller

11.3.1 Features of 8051microcontroller

The main features of 8051 microcontroller are:

 RAM – 128 Bytes (Data memory)
- Four register banks, each containing eight registers.
- Sixteen bytes, which may be addressed at the bit level.
- Eighty bytes of general – purpose data memory.

 ROM – 4Kbytes (ROM signify the on – chip program space)
 Serial Port – Using UART makes it simpler to interface for

serial communication

 Two 16 bit timer / counters : T0 and T1

 Input/output Pins – 4 Ports of 8 bits each on a single chip

 136

 6 Interrupt Sources

 Eight bit CPU with registers A (the accumulator) and B

 It has 16 bit Address bus and 8 bit Data Bus
 8051 can execute 1 million one-cycle instructions per second

with a clock frequency of 12MHz.

This microcontroller is also called as “System on a chip” because it
has all the features on a single chip.

11.3.2 8051Pin diagram

Fig. 2 Pin out diagram 8051 microcontroller

A pinout of the 8051 packaged in a 40 pin DIP is shown in fig
3 with the full and abbreviated names of the signals for each pin. It
is important to note that many of the pins are used for more than
one function.

Pins 32 – 39: Known as Port 0 (P0.0 to P0.7) – In addition to
serving as I/O port, lower order address and data bus signals are
multiplexed with this port (to serve the purpose of external memory

http://www.engineersgarage.com/tutorials/interrupts-8051-interrupt-programming

 137

interfacing). This is a bi directional I/O port (the only one in 8051)
and external pull up registers are required to function this port as
I/O.
Pins 1 – 8: Known as Port 1. Port 1 is an internally pulled up, quasi
bi directional I/O port.Unlike other ports, this port does not serve
any other functions.

Pins21 – 28: Known as Port 2 (P 2.0 to P 2.7) – in addition to
serving as I/O port, higher order address bus signals are
multiplexed with this quasi bi directional port.

Pins 10 – 17: Known as Port 3. This port also serves some other
functions like interrupts, timer input, control signals for external
memory interfacing RD and WR, serial communication signals RxD
and TxD etc. This is a quasi bi directional port with internal pull up.

Pin 9: As explained before RESET pin is used to set the 8051
microcontroller to its initial values, while the microcontroller is
working or at the initial state of application.

Pins 18 and 19: Used for interfacing an external crystal to provide
system clock.

Pin 20: Named as Vss – It represents Ground (0 V) connection.

Pin 29:PSEN or Program Store Enable is used to read signal from
external program memory.

Pin30: EA or External Access input is used to enable or disallow
external memory interfacing. If there is no external memory
requirement, this pin is pulled high by connecting it to Vcc.

Pin31: ALE or Address Latch Enable is used to demultiplex the
address-data signal of port 0 (for external memory interfacing.)

Pin-40 : Named as Vcc is the main power source. Usually it is +5V
DC.

11.4 THE8051 MICROCONTROLLER ARCHITECTURE

11.4.1 Oscillator and Clock :
 The heart of the 8051 is the circuitry that generates the clock
pulses by which all internal operations are synchronized. Pins
XTAL 1 and XTAL 2 are provide for connecting a resonant network
to form an oscillator. Typically, a quartz crystal and capacitors are
employed, as shown in figure 4. The crystal frequency is the basic
internal clock frequency of the microcontroller. Clock frequency
limits (maximum and minimum) may change from device to device.
Standard practice is to use 12MHz frequency. If serial

 138

communications are involved then its best to use 11.0592 MHz
frequency.

Fig. 3

 To calculate the time any particular instruction will take to be
executed, and the number of cycles, C. The time to execute that
instruction is then found by multiplying C by 12 and dividing the
product by the crystal frequency :

12
inst

C d
T

Crystal frequency

 For example, if the crystal frequency is 16 megahertz, then
the time to execute an ADD A, R1 one-cycle instruction is .75 micro
seconds. A 12 megahertz crystal yields the convenient time of 1
microsecond per cycle. An 11.0592 megahertz crystal, although
seemingly an odd value, yields a cycle frequency of 921.6 kilohertz.

11.4.2 Program Counter and Data Pointer
 The 8051 contains two 16 bit registers : The program
counter (PC) and the data pointer (DPTR). Each is used to hold the
address of a byte in memory.

 The Program Counter (PC) is a 2-byte address which tells
the 8051 where the next instruction to execute is found in memory.
When the 8051 is initialized PC always starts at 0000h and is
incremented each time an instruction is executed. It is important to
note that PC is not always incremented by one. Since some
instructions require 2 or 3 bytes the PC will be incremented by 2 or
3 in these cases.

The Data PointerDPTR, as the name suggests, is used to
point to data. The DPTR register is made up of two 8 bit registers,
named DPH and DPL, which are used to furnish memory
addresses for internal and external code access and external data
access. The DPTR is under the control of program instructions and

 139

can be specified by its 16 bit name, DPTR, or by each individual
byte name, DPH and DPL. DPTR does not have a single internal
address; DPH and DPL are each assigned an address.

11.4.3 A and B CPU Registers :
 The A (accumulator) register is the most versatile of
the two CPU register and is used for many operations, including
addition, subtraction, integer multiplication and division, and
Boolean bit manipulations. The A register is also used for all data
transfers between the 8051 and any external memory. The B
register is used with the A register for multiplication and division
operations and has no other function other than as a location where
data may be stored.

11.4.4 Flags and the Program Status Word (PSW) :
 The register PSW(Program Status Word) or the program
status word contains information on the status of the CPU.
Contains indicators or flags to use conditional statements to make
decisions. The 8051 has four math flags that respond
automatically to the outcomes of math operations and three general
– purpose user flags that can be set to 1 or cleared to 0 by the
programmer as desired. The math flags include carry (C), Auxiliary
carry (AC), Overflow (OV), and Parity (P). User flags is named F0,
it is a general purpose flags that may be used by the programmer
to record some event in the program. Note that all of the flags can
be set and cleared by the programmer at will. The math flags,
however, are also affected by math operations.

 The program status word is shown in figure 5 the PSW
contains the math flags, user program flag F0, and the register
select bits that identify which of the four general purpose register
banks is currently in use by the program.

Figure 5 PSW program status word Register

 140

The Program Status Word (PSW) is a Special Function Register

Bit Symbol Function

7 CY Carry Flag : Used in arithmetic, jump, rotate, and
Boolean instructions.

6 AC Auxiliary Carry Flag : Used for BCD arithmetic

5 FO User flag 0

4 RS1 Register Bank Select bit 1

3 RS0 Register Bank Select bit 0

 RS1 RS0

 0 0 Select Register Bank 0

 0 1 Select Register Bank 1

 1 0 Select Register Bank 2

 1 1 Select Register Bank 3

2 OV Overflow flag: Used in arithmetic instructions.

1 - Reserved for future use

0

P Parity Flag: Shows parity of register A : 1 = odd
parity.

Bit Addressable as PSW 0 to PSW 7

11.4.5 Stack Pointer
 The stack pointer indicates where the next value to be taken
from the stack will be read from in internal RAM. If you push a value
on to the stack, the value will be written to the address SP + 1. If
SP holds the value 07h, a PUSH instruction will push the value onto
the stack address 08h. The stack pointer is modified by instructions
such as PUSH, POP, LCALL, RET, RETI and whenever interrupts
are provoked by the microcontroller.

11.5 MEMORY ORGANISATION

 The 8051 has two types of memory and these are Program
Memory and Data Memory. Program Memory (ROM) is used to
permanently save the program being executed, while Data Memory
(RAM) is used for temporarily storing data and intermediate results
created and used during the operation of the microcontroller.

 All 8051 microcontrollers have a 16-bit addressing bus and
are capable of addressing 64 kb memory.

 141

11.5.1 Program Memory

It has an internal program of 4K size and if needed an
external memory can be added (by interfacing) of size 60K
maximum. So in total 64K size memory is available for 8051 micro
controller. By default, the External Access (EA) pin should be
connected Vcc so that instructions are fetched from internal
memory initially. When the limit of internal memory (4K) is crossed,
control will automatically MOVe to external memory to fetch
remaining instructions. If the programmer wants to fetch instruction
from external memory only (bypassing the internal memory), then
he must connect External Access (EA) pin to ground (GND).

EA=0In this case, the microcontroller completely ignores internal
program memory and executes only the program stored in external
memory.

EA=1In this case, the microcontroller executes first the program
from built-in ROM, then the program stored in external memory.

11.5.2 Data Memory

 Data Memory is used for temporarily storing data and
intermediate results created and used during the operation of the
microcontroller. Besides, RAM memory built in the 8051 family
includes many registers such as hardware counters and timers,
input/output ports, serial data buffers etc. Locations available to the
user occupy memory space with addresses 00-7Fh, i.e. first 128
registers. This part of RAM is divided in several blocks.

The 128 byte internal RAM, which is shown generally in figure is
organized into three distinct areas :

1. Register Bank :Thirty two bytes from address 00h to 1Fh, that

make up 32 working registers organized as four banks of eight
registers each. The four register banks are numbered 0 to 3 and
are made up of eight registers named R0 to R7. Each register
can be addressed by name (when its bank is selected or by its
RAM address. Thus R0 of bank 3 is R0 (if bank 3 is currently
selected) or address 18h (whether bank 3 is selected or not).
Bits RS0 and RS1 in the PSW determine which bank of
registers is currently in use at any time when the program is
running. Register banks not selected can be used as general
purpose RAM. Bank 0 is selected on reset.

2. A bit – addressable area: A bit – addressable area of 16 bytes
occupies RAM byte addresses 20h to 2Fh, forming a total of
128 addressable bits. An addressable bit may be specified by its
bit address of 00h to 7Fh, or 8 bits may form any byte address.

 142

From 20h to 2Fh. Thus, For example, bit address 4Fh is also bit
7 of byte address 29 h.

3. A general purpose RAM:A general purpose RAM area above

the bit area, from 30h to 70h, addressable as bytes.

Figure: Memory (a)

 143

11.6 SUMMARY

 A microcontroller is an integrated circuit or a chip with a

processor and other support devices like program memory,
data memory, I/O ports, serial communication interface etc
integrated together.

 Unique features of microcontrollers.

 Internal ROM and RAM

 I/O ports with programmable pins

 Timers and counters

 Serial data communication

 The Program Counter (PC) is a 2-byte address which tells
the 8051 where the next instruction to execute is found in
memory.

 The crystal frequency is the basic internal clock frequency of

the microcontroller. Clock frequency limits (maximum and
minimum) may change from device to device. Standard
practice is to use 12MHz frequency.

 The DPTR register is made up of two 8 bit registers, named DPH

and DPL, which are used to furnish memory addresses for internal
and external code access and external data access.

 The A (accumulator) register is the most versatile of the two

CPU register and is used for many operations, including
addition, subtraction, integer multiplication and division, and
Boolean bit manipulations.

 The stack pointer indicates where the next value to be taken

from the stack will be read from in internal RAM.

 The PSW(Program Status Word) contains information

offlags.This includes carry (C), Auxiliary carry (AC),
Overflow (OV), and Parity (P), user flag F0 and RS0 & RS1
to select Register bank.

 RAM memory built in the 8051 family includes many

registers such as hardware counters and timers, input/output
ports, serial data buffers etc. Locations available to the user
occupy memory space with addresses 00-7Fh, i.e. first 128
registers.

 144

11.7 REVIEW QUESTIONS

Q.1 Describe in brief the history of 8051.

Q.2 Draw and explain the block diagram of inside the
microcontroller 8051.

Q.3 State the features of 8051 microcontroller.

Q.4 Describe the program counter in the 8051.

Q.5 Describe the stack pointer in the 8051.

Q.6 Explain the role of DPTR register in the 8051.

Q.8 Compare the features of 8031, 8051

Q.9 Write a note on PSW register.

Q.10 Describe the various flags used along with their functions in
the 8051.

Q.11 Explain the oscillator and clock in the 8051.

Q.12 How the RAM of 8051 is organized?

11.7 REFERENCE

 The 8051 Microcontroller by Kenneth J. Ayala, Publisher:
Thomson Delmar Learning

 The 8051 Microcontroller And Embedded Systems Using

Assembly And C, 2/E By Mazidi and Mazidi, Publisher:
Pearson Education India





 145

12

THE 8051 MICROCONTROLLER ...continued

12.1 Objectives

12.2 Special Function Registers

12.3Counter and timers

12.4 Serial communication

12.4 Interrupts

12.5 Summary

12.6 Review Questions

12.7 Reference

12.1 OBJECTIVES

After studying this chapter you should be able to
 Describe the SFR in the 8051 microcontroller
 Understand the working of counters in the 8051
 Understand the interrupts in the 8051

12.2 SPECIAL FUNCTION REGISTERS

The 8051 operations that do not use the internal 128-byte

RAM addresses from 00h to 7Fh are done by a group of specific
internal registers, each called a special Function register (SFR),
which may be addressed much like internal RAM using addresses
from 80h to FFh.

 Some SFRs (marked with an asterick * in figure) are also bit
addressable, as is the case for the bit area of RAM. This feature
allows the programmer to change only what needs to be altered,
leaving the remaining bits in that SFR unchanged.

Not all of the addresses from 80h to FFh are used for SFRs,
and attempting to use an address that is not defined or empty,
results in unpredictable results. The SFR names and equivalent
internal RAM addresses are given in the following list :

 146

NAME FUNCTION
INTERNAL RAM ADDRESS

(HEX)

A Accumulator 0E0

B Arithmetic 0F0

DPH
Addressing external
memory

83

DPL
Addressing external
memory

82

IE Interrupt enable control 0A8

IP Interrupt priority 0B8

P0 Input/Output port latch 80

P1 Input/Output port latch 90

P2 Input/Output port latch A0

P3 Input/Output port latch 0B0

PCON Power control 87

PSW Program status word 0D0

SCON Serial port control 98

SBUF Serial port data buffer 99

SP Stack pointer 81

TMOD
Timer/ counter mode
control

89

TCON Timer/counter control 88

TL0 Timer 0 low byte 8A

THO Timer 0 high byte 8C

TL1 Timer 1 low byte 8B

TH1 Timer 1 high byte 8D

Note that the PC is not part of the SFR and has no internal RAM
address.

 147

12.3 COUNTER AND TIMER

The microcontroller oscillator uses quartz crystal for its

operation. As the frequency of this oscillator is precisely defined
and very stable, pulses it generates are always of the same width,
which makes them ideal for time measurement. In order to measure
time between two events it is sufficient to count up pulses coming
from this oscillator. That is exactly what the timer does. If the timer
is properly programmed, the value stored in its register will be

 148

incremented (or decremented) with each coming pulse, i.e. once
per each machine cycle. A single machine-cycle instruction lasts for
12 quartz oscillator periods, which means that by embedding quartz
with oscillator frequency of 12MHz, a number stored in the timer
register will be changed million times per second, i.e. each
microsecond.

The 8051 microcontroller has 2 timers/counters called T0

and T1. As their names suggest, their main purpose is to measure
time and count external events. Besides, they can be used for
generating clock pulses to be used in serial communication, so
called Baud Rate.

12.3.1 Timer T0 and T1

The counters are divided into two 8 bit registers called the
timer low (TL0, TL1) and high (TH0, TH1) bytes. All counter action
is controlled by bit states in the timer mode control register
(TMOD), the timer/counter control register (TCON), and certain
program instructions.

Since the timer T0 is virtually 16-bit register, the largest

value it can store is 65 535. In case of exceeding this value, the
timer will be automatically cleared and counting starts from 0. This
condition is called an overflow.

12.3.2 TCON: Timer/Counter Control Register (Bit
Addressable)

TCON has control bits and flags for the timers in the upper
nibble. It has control bits and flags for the external interrupts in the
lower nibble.

 149

TF1 TCON. 7 Timer 1 overflow flag. Set by hardware when
 the Timer/Counter 1 overflows. Cleared by
 hardware as the processor vectors to the
 interrupt service routine.

TR1 TCON. 6 Timer 1 run control bit. Set/cleared by
 software to turn Timer/Counter 1 ON/OFF.

TF0 TCON. 5 Timer 0 overflow flag. Set by hardware when
 the Timer/Counter 0 verflows. Cleared by
 hardwareas the processor vectors to the
 service routine.

TR0 TCON. 4 Timer 0 run control bit. Set/cleared by software
 to turn Timer/Counter 0 ON/OFF.

IE1 TCON. 3 External Interrupt 1 edge flag. Set by
 hardware when the External Interrupt edge is
 detected. Cleared by hardware when the
 interrupt is processed.

IT1 TCON. 2 Interrupt 1 type control bit. Set/cleared by
 software to specify falling edge/low level
 triggered External Interrupt.

IE0 TCON. 1 External Interrupt 0 edge flag. Set by hardware
 when External Interrupt edge detected.
 Cleared byhardware when interrupt is
 processed.

IT0 TCON. 0 Interrupt 0 type control bit. Set/cleared by
 software to specify falling edge/low level
 triggered External Interrupt.

12.3.3 TMOD: Timer/Counter Mode Control Register (Not Bit
Addressable)

TMOD is dedicated solely to the two timers and can be
considered to be two duplicate 4-bit registers, each of which
controls the action of one of the timers.

GATE When TRx (in TCON) is set and GATE = 1,
TIMER/COUNTERx runs only while the INTx pin is high

 150

(hardwarecontrol). When GATE = 0, TIMER/COUNTERx will run
only while TRx = 1 (software control).

C/T Timer or Counter selector. Cleared for Timer operation (input
from internal system clock). Set for Counter operation(input from Tx
input pin).
M1 Mode selector bit.
M0 Mode selector bit.

M1 M0 Operating Mode
0 0 0 13-bit Timer
0 1 1 16-bit Timer/Counter
1 0 2 8-bit Auto-Reload Timer/Counter
1 1 3 Split Timer Mode: (Timer 0) TL0 is an 8-bit
 Timer/Counter controlled by the standard
 Timer 0control bits, TH0 is an 8-bit
 Timer and is controlled by Timer 1 control bits.
1 1 3 (Timer 1) Timer/Counter 1 stopped.

12.3.4 Modes of operation

TIMER MODE 0 (13 bit mode)

MODE 0 is a 13 bit mode. In this mode the THx acts as an 8 bit
timer & TLx acts as a 5 bit timer. The TLx counts up to 31 & then
resets to 00 & increment THx by 1. Suppose you load 0 in the timer
then the timer will overflow in 213 i.e. 8192 machine cycles.

TIMER MODE 1 (16 bit mode)

MODE 1 is similar to MODE 0 except it is a 16 bit mode. In this
mode the THx & TLx both acts as an 8 bit timer. The TLx counts
upto 255 & then resets to 00 & increment THx by 1. Since this is a
full 16 bit timer we can get maximum of 216 i.e. 65536 Machine
cycle before the the timer overflows.

TIMER MODE 2 (8 bit mode)

In this Mode TLx accts as the timer & Thx contains the RELOAD
VALUE i.e. THx is loaded in TLx everytime it overflows i.e. when
TLx reaches 255 & is incremented then instead of resetting it to 0 it
will be reseted to the value stored in THx. This mode is very
commony used for generating baud rate used in serial
communication.

 151

TIMER MODE 3 (Split Mode)

Timers 0 and 1 may be programmed to be in mode 0, 1, or 2
independently of a similar mode for the other timer. This is not true
for mode 3; the timers do not operate independently if mode 3 is
chosen for timer 0. Placing timer 1 in mode 3 causes it to stop
counting; the control bit TR1 and the timer 1 flag TF1 are then used
by timer 0.

When Timer 0 is placed in mode 3, it essentially becomes two
separate 8-bit timers. That is to say, Timer 0 is TL0 and Timer 1 is
TH0. Both timers count from 0 to 255 and overflow back to 0. All
the bits that are related to Timer 1 will now be tied to TH0. So even
if you use Timer 1 in Mode 0, 1 or 2 you won‟t be able to START or
STOP the timer & no INTERRUPT will be generated by Timer 1. So
the Timer 1 will be incremented every machine cycle no matter
what.

12.4 SERIAL COMMUNICATION

The 8051 has a serial data communication circuit that uses register
SBUF to hold the data. Register SCON controls data
communication, Register PCON controls data rates, and pins RXD
(P3.0) and TXD (P3.1) connect to serial network.

10.8.1 PCON – Power Control Register

D7 D6 D5 D4 D3 D2 D1 D0

SMOD x x x GF1 GF0 PD IDL

Address: 87H (not bit addressable)
SMOD – Serial mode bit used to determine the baud rate with
Timer 1.

If SMOD = 0 then N = 384. If SMOD = 1 then N = 192. TH1 is the
high byte of timer 1 when it is in 8-bit autoreload mode.

GF1 and GF0 are General purpose flags not implemented on the
standard device
PD is the power down bit. Not implemented on the standard device
IDL activate the idle mode to save power. Not implemented on the
standard device

12.4 .2 SCON – Serial Control Register

The Serial Control SFR is used to configure the behavior of the
8051's on-board serial port. This SFR controls the baud rate of the

 152

serial port, whether the serial port is activated to receive data, and
also contains flags that are set when a byte is successfully sent or
received.

D7 D6 D5 D4 D3 D2 D1 D0

SM0 SM1 SM2 REN TB8 RB8 TI RI

Address: 98H (bit-addressable)

SM0 SM1 Operation Baud rate

0 0 Shift register Osc/12

0 1 8-bit UART Set by timer

1 0 9-bit UART Osc/12 or Osc/64

1 1 9-bit UART Set by timer

SM2 – Enables multiprocessor communication in modes 2 and 3.
REN – Receiver enable

TB8 – Transmit bit 8. This is the 9
th

bit transmitted in modes 2 and
3.

RB8 – Receive bit 8. This is the 9
th

bit received in modes 2 and 3.
TI – Transmit interrupt flag. Set at end of character transmission.
Cleared in software.
RI – Receive interrupt flag. Set at end of character reception.
Cleared in software.

12.5 INTERRUPTS

Five interrupts are provided in 8051. Three of these are

generated automatically by internal operation : Timer flag 0, Timer
flag 1 and serial port interrupt (R1 or T1)

Two interrupts are triggered by external signals provided by

circuitry that is connected to pins INT0 and INT1 (Port pins P3.2
and P3.3)

RESET interrupt - This is also known as Power on Reset

(POR). When the RESET interrupt is received, the controller
restarts executing code from 0000H location. This is an interrupt
which is not available to or, better to say, need not be available to
the programmer.

The programmer is able to alter control bits in the interrupt

enable register (IE), the interrupt priority register (IP), and the timer
control register (TCON). The program can block all or any
combination of the interrupts from acting on the program by suitably
setting and clearing bits in these registers.

 153

12.5.1 IE - Interrupt Enable register

The Interrupt Enable SFR is used to enable and disable
specific interrupts. The D0 bits of the SFR are used to
enable/disable the specific interrupts, where as the highest bit D7 is
used to enable or disable ALL interrupts. Thus, if the high bit of IE
is 0 all interrupts are disabled regardless of whether an individual
interrupt is enabled by setting a lower bit.

D7 D6 D5 D4 D3 D2 D1 D0

EA x ET2 ES ET1 EX1 ET0 EX0

EA – Global interrupt enable
x – not defined
ET2 – Timer 2 interrupt enable
ES – Serial port interrupt enable
ET1 – Timer 1 interrupt enable
EX1 – External interrupt 1 enable
ET0 – Timer 0 interrupt enable
EX0 – External interrupt 0 enable

12.5.2 IP - Interrupt Priority register

The Interrupt Priority SFR is used to specify the relative
priority of each interrupt. On the 8051, an interrupt may either be of
low (0) priority or high (1) priority. An interrupt may only interrupt
interrupts of lower priority. For example, if we configure the 8051 so
that all interrupts are of low priority except the serial interrupt, the
serial interrupt will always be able to interrupt the system, even if
another interrupt is currently executing. However, if a serial
interrupt is executing no other interrupt will be able to interrupt the
serial interrupt routine since the serial interrupt routine has the
highest priority.

D7 D6 D5 D4 D3 D2 D1 D0

x x PT2 PS PT1 PX1 PT0 PX0

x – not defined
PT2 – Priority for timer 2 interrupt
PS – Priority for serial port interrupt
PT1 – Priority for timer 1 interrupt
PX1 – Priority for external interrupt 1
PT0 – Priority for timer 0 interrupt

 154

PX0 – Priority for external interrupt 0

12.5 SUMMARY

 The 8051 microcontroller has 2 timers/counters called T0 and

T1. They are used to measure time and count external events.
Besides, they can be used for generating clock pulses to be
used in serial communication.

 The 8051 has a serial data communication circuit that uses

register SBUF to hold the data. Register SCON controls data
communication, Register PCON controls data rates, and pins
RXD (P3.0) and TXD (P3.1) connect to serial network.

 Five interrupts are provided in 8051. Three of these are

generated automatically by internal operation : Timer flag 0,
Timer flag 1 and serial port interrupt (R1 or T1)

 Two interrupts are triggered by external signals provided by

circuitry that is connected to pins INT0 and INT1 (Port pins P3.2
and P3.3)

12.6 REVIEW QUESTIONS

Q.1 Explain the concept of SFR.
Q.2 Explain the concept of timer T0 & T1.
Q.3 Explain different modes of operation of timer.
Q.4 Explain serial communication in 8051.



 155

13

THE 8051 PORT PROGRAMMING

Unit Structure

13.1 Introduction

13.2 I/O Ports and their Functions

13.3 I/O Programming

13.4 Addressing Modes

13.5 External Data Moves

13.6 Summary

13.7 Review Questions

13.8 Reference

After studying this chapter you should be able to

 Describe the I/O ports of the 8051 microcontroller.

 Do the I/O programming

 Understand addressing modes in 8051 programming

 Understand flag register

13.1 INTRODUCTION

A Computer typically sends more time moving data from one

location to another than it spends on any other operation. Data is
stored at a source address and moved to a destination address.
The ways by which these addresses are specified are called the
addressing modes. The 8051 mnemonics are written with the
destination address named first, followed by the source address.

The 8051 microcontroller has four I/O ports. The four ports

P0, P1, P2 and P3 each use 8 pins – making them 8-bit ports. All
the parts upon RESET are configured as output, ready to be used
as output port. To use any of these ports as an input port, it must
be programmed, as we will explain throughout this section.

 156

13.2 I/O PORT PINS AND THEIR FUNCTIONS :

13.2.1 Port 0

 Port 0 occupies a total of 8 pins (Pins 32-39). It can be used
for input or output. To use the pins of port 0 as both input and
output ports, each pin must be connected externally to a 10K ohm
pull-up resister. This is due to the fact that P0 is an open drain is a
term used for MOS chips in the same way that open collector is
used to TTL chips. See figure 1. in this way we take advantage of
port 0 for both input and output. With external pull up resistors
connected upon reset, port 0 is configured as an output port. For
example, the following code will continuously send out to port 0 the
alternating values 55H and AAH.

 MOV A, # 55H
BACK : MOV P0, A
 ACALL DELAY
 CPL A
 SJMP BACK

13.2.1.1 Port 0 as input

 With resistors connected to port 0, in order to make it an
input, the port must be programmed by writing 1 to all the bits. In
the following code, port 0 is configured first as an input port by
writing 1s to it and then data is received from that port and sent to
P1.

 157

 MOV A, # FFH ; A = FF hex
 MOV P0, A ; make P0 an input port
 ; by writing all 1s to it
BACK : MOV A, P0 ; get data from P0
 MOV P1, A ; send it to port 1
 SJMP BACK ; keep doing it

13.2.1.2 Dual role of port 0
 As shown in figure 1, port 0 is also designated as AD0-AD7,
allowing it to be used for both address and data. When connecting
an 8051to an external memory, port 0 provides both address and
data. The 8051 multiplexes address and data through port 0 to
save pins. ALE indicates if P0 has address or data. When ALE = 0,
it provides data D0-D7, but when ALE = 1 it has address A0-A7.
Therefore, ALE is used for demultiplexing address and data with
the help of a 74LS373 latch.

13.2.2 Port 1
 Port 1 occupies a total of 8 pins (pins 1 through 8). It can be
used as input or output. In contrast to port 0, this port does not
need any pull-up resistors since it already has pull-up resistors
internally. Upon reset port 1 is configured as an output port. For
example, the following code will continuously send out to port. For
example, the following code will continuously send out to port 1 the
alternating values 55H and AAH.

 MOV A, # 55H
BACK : MOV P1, A
 ACALL DELAY
 CPL A
 SJMP BACK

13.2.2.1 Port 1 as input
 To make port 1 an input port, it must programmed as such
by writing 1 to all its bits. In the following code, port 1 is configured
first as an input port by writing 1s to it and then data is received
from that port and saved in R7, R6 and R5.

MOV A, # FFH ; A = FF hex
MOV P1, A ; make P1 an input port
 ; by writing all 1s to it
MOV A, P1 ; get data from P1
MOV P7, A ; save it in reg. R7
ACALL DELAY ; Wait
MOV A, P1 ; get another data from P1
MOV R6, A ; save it in reg. R6
ACALL DELAY ; Wait
MOV A, P1 ; get another data from P1
MOV R6, A ; save it in reg. R5

 158

13.2.3 Port 2
 Port 1 occupies a total of 8 pins (pins 21 through 28). It can
be used as input or output. Just like P1, port 2 does not need any
pull-up resistors since it already has pull-up resistors internally.
Upon reset port 2 is configured as an output port. For example, the
following code will send out continuously port 2 the alternating
values 55H and AAH. That is, all the bits of P2 toggle continuously.

 MOV A, # 55H
BACK : MOV P2, A
 ACALL DELAY
 CPL A
 SJMP BACK

Port 2 as input
 To make port 1 an input port, it must programmed as such
by writing 1 to all its bits. In the following code, port 1 is configured
first as an input port by writing 1s to it. Then data is received from
that port and is sent to P1 continuously.

 MOV A, # FFH ; A = FF hex
 MOV P2, A ; make P2 an input port
 ; by writing all 1s to it
BACK : MOV A, P2 ; get data from P2
 MOV P1, A ; send it to port 1
 SJMP BACK ; keep doing it

Dual role of port 2
 In 8051-based systems, port 2 must be used along with P0
to provide the 16 bit address for the external memory. As shown in
figure 1, port 2 is also designated as A8-A15, indicating its dual
function.

 Since an 8051 is capable of accessing 64 Kbytes of external
memory, it needs a path for the 16 bits of the address. While P0
provides the lower 8 bits via A0-A7, it is the job of P2 to provide bits
A8-A15 of the address. In other words, when the 8051 is connected
to external memory, P2 is used for the upper 8 bits of the 16 bit
address, and it cannot be used for I/O.

 We have three ports. P0, P1 and P2, for I/O operations. This
should be enough for most micro controller applications.

13.2.4 Port 3
 Port 3 occupies a total of 8 pins, pins 10 through 17. It can
be used as input or output. P3 does not need any pull up resistors,
the same as P1 and P2 did not. Although port 3 is configured as an
output port upon reset, this is not the way it is most commonly
used. Port 3 has the additional function of providing some

 159

extremely important signals such as interrupts. Table 1 provides
these alternate functions of P3. this information applies to both
8051 and 8031 chips.

P3 Bit Function Pin

P3.0 RxD 10

P3.1 TxD 11

P3.2 INT0 12

P3.3 INT1 13

P3.4 T0 14

P3.5 T1 15

P3.6 WR 16

P3.7 RD 17

 P3.0 and P3.1 are used for the RxD and TxD serial
communications signals. Bits P3.2 and P3.3 are set aside for
external interrupts. Bits P3.4 and P3.5 are used for timers 0 and 1.

Finally P3.6 and P3.7 are used to provide the WR andRD signals
of external memories connected in 8051 based systems.

13.3 I/0 PROGRAMMING; BIT MANIPULATION

 In this section we further examine 8051 I/O instructions. We
pay special attention to I/O bit manipulation since it is a powerful
and widely used 8051 feature.

13.3.1 Different ways of Accessing the entire 8 bits
 In the following code, as in many previous I/O examples, the
entire 8 bits of port 1 are accessed.

BACK : MOV A, # 55H
 MOV P1, A
 ACALL DELAY
 MOV A,# AAH
 MOV P1, A
 ACALL DELAY
 SJMP BACK

 The above code toggles even, bit of P1 continuously. We
have seen a variation of the above program before. Now we can
rewrite the above code in a more efficient manner by accessing the
port directly without going through the accumulator. This is shown
next.

 160

BACK : MOV P1, # 55H
 ACALL DELAY
 MOV P1, # 55H
 ACALL DELAY
 SJMP BACK

We can write another variation of the above code by using a
technique called read-modify-write.

13.3.2 Read-modify-write Feature
 The ports on the 8051 can be accessed by the read-modify-
write technique. This feature saves many lines of code by
combining in a single instruction all three actions of (1) reading the
port (2) modifying it, and (3) writing to the port. The following code
first places 01010101 (binary) into port 1. next, the instruction “XLR
P1, # 0FFH” performs an XOR logic operation on P1 with 1111
1111 (binary) and then writes the result back into P1

 MOV P1, # 55H ; P1 = 01010101
AGAIN XLR P1, # OFFH ; EX_OR P1 with 1111 1111
 ACALL DELAY
 SJMP BACK

Notice that the XOR of 55H and FFH gives AAH. Likewise, the
XOR of AAH and FFH gives 55H.

13.3.3 Single-bit addressability of ports
 There are times that we need to access only 1 or 2 bits of
the port instead of the entire 8 bits. A powerful feature of 8051 I/O
ports is their capability to access individual bits of the port without
altering the rest of the bits in that port. For example, the following
code toggles the bit P1.2 continuously.

Back CPL P1.2 ; complement P1.2 only
 ACALL DELAY
 SJMP BACK

Another variation of the above program follows.

AGAIN : SET B P1.2 ; change only P1.2 = high
 ACALL DELAY
 CPL P1.2 ; change P1.2 = low
 ACALL DELAY
 SJMP BACK

 161

P0 P1 P2 P3 Port Bit

P0.0 P1.0 P2.0 P3.0 D0

P0.1 P1.1 P2.1 P3.1 D1

P0.2 P1.2 P2.2 P3.2 D2

P0.3 P1.3 P2.3 P3.3 D3

P0.4 P1.4 P2.4 P3.4 D4

P0.5 P1.5 P2.5 P3.5 D5

P0.6 P1.6 P2.6 P3.6 D6

P0.7 P1.7 P2.7 P3.7 D7

 Table 2 : Single-Bit Addressability of ports

Notice that P1.2 is the third bit of P1, since the first bit is
P1.2, the second bit is P1.1, and so on. Table 2 shows the bits of
8051 I/O ports. See example 2 for an example of bit manipulation of
I/O bits. Notice in example 1 that unused portions of ports 1 and 2
are undisturbed. This single bit addressability of I/0 ports is one of
most powerful features of the 8051 microcontroller.

Example 1
 Write a program to perform the following.

a) Keep monitoring the P1.2 bit unit it becomes high.
b) When P1.2 becomes high, write value 45H to port 0, and
c) Send a high-to-low (H to 1) pulse to P2.3

Solution :
 SET B P1.2 ; make P1.2 an input
 MOV A, # 45H A = 45H
AGAIN : JNB P1.2,

AGAIN
; get out-when P1.2 = 1

 MOV P0, A ; issue A to P0
 SETB P2.3 ; make P2.3 high
 CLR P2.3 ; make P2.3 low for H-to-L

 In this program, instruction “JNB P1.2, AGAIN” (JNB means
jump if no bit) stays in the loop as long as P1.2 is low. When P1.2
becomes high, it gets out of the loop, writes the values 45H to port
0, and creates a H-to-L pulse by the sequence of instructions SET
B and CLR.

13.4 ADDRESSING MODES

 The ways the data sources or destination address are
specified in the mnemonic that moves that data determines the
addressing mode. Figure 2 diagrams the four addressing modes
immediate, register, direct and indirect.

 162

13.4.1 Immediate Addressing Mode
 The simplest way to get data to a destination is to make the
source of the data part of the opcode. The data source is then
immediately available as part of the instruction itself. When the
8051 executes an immediate data Move, the program counter is
automatically incremented to point to the byte following the opcode
byte in the program memory. Whatever data is found there is
copied to the destination address.

 The mnemonic for immediate data is the pound sign (#).
Occasionally, in the rush to meet a deadline, we might forget to use
the # for immediate data. The resulting opcode is often a legal
command that is assembled with no objections by the assembler.

 163

13.4.2 Register Addressing Mode
 Certain register names may be used as part of the opcode
mnemonic as sources or destinations of data. Registers A DPTR,
and R0 to R7 may be named as part of the opcode mnemonic.
Other registers in the 8051 may be addressed using the direct
addressing mode. Remember that the registers used in the opcode
as R0 to R7 are the ones that are currently chosen by the blank-
select bits, RS0 and RS1 in the PSW.

The following table shows all possible MOVopcodes using
immediate and register addressing modes.

Mnemonic Operation

MOV A, #n Copy the immediate data byte n to the A register

MOV A, Rr Copy data from Rr to the A register

MOV Rr, A Copy data from A to the Rr register

MOV Rr, #n Copy the immediate data byte n to Rr register

MOV DPTR,
#nn

Copy the immediate 16 bit number nn to the
DPTR register

 A data MOV does not alter the contents of the data source
address. A copy of the data is made from the source and Moved to
the destination address the contents of the destination address are
replaced by the source address contents the following table shows
examples of MOVopcodes with immediate and register addressing
modes.

Mnemonic Operation

MOV A, #0F1n
Move the immediate data byte F1h to the A
register

MOV A, R0 Copy the data in register R0 to register A

MOV DPTR, #
0ABCDh

Move the immediate data bytes ABCDh to the
DPTR

MOV R5, a Copy the data in register A to register R5

MOV R3,
#1Ch

Move the immediate data byte 1Ch to register R3

13.4.3 Direct Addressing Mode
 All 128 bytes of internal RAM and the SFRS may be a
addressed directly using the single-byte address assigned to each
RAM location and each special function register.

 Internal RAM uses addresses from ooh to 7Fh to address
each byte. The SFR addresses exist from 80h to FFh at the
following locations.

SFR ADDRESS (HEX)

 164

A 0E0

B 0F0

DPL 82

DPH 83

IE 0A8

IP 0B8

P0 80

P1 90

P2 0A0

P3 0B0

PCON 87

PSW 0D0

SBUF 99

SCON 98

SP 81

TCON 88

TMOD 89

TH0 8C

TL0 8A

TH1 8D

TL1 8B

 RAMaddress 00 to 1Fh is also the locations assigned to the
four banks of eight working registers, R0 to R7. This assignment
means that R2 of register bank 0 can be addressed in the register
mode as R2 or in the direct mode as 02h. The direct addresses of
the working registers are as follows :

BANK
REGISTER

ADDRESS
(HEX)

BANK
REGISTER

ADDRESS
(HEX)

0 R0 00 2 R0 10

0 R1 01 2 R1 11

0 R2 02 2 R2 12

0 R3 03 2 R3 13

0 R4 04 2 R4 14

0 R5 05 2 R5 15

0 R6 06 2 R6 16

0 R7 07 2 R7 17

1 R0 08 3 R0 18

1 R1 09 3 R1 19

1 R2 0A 3 R2 1A

1 R3 0B 3 R3 1B

1 R4 0C 3 R4 1C

1 R5 0D 3 R5 1D

1 R6 0E 3 R6 1E

1 R7 0F 3 R7 1F

 165

 Only one bank of working registers is active at any given
time. The PSW special-function register holds the bank-select bits,
RS0 and RS1, which determine which register bank is in use. When
the 8051 is reset, RS0 and RS1 are set to 006 to select the working
registers in bank 0, located from 00h to 07h in internal RAM. Reset
also sets SP to 07h, and the stack will grow up as it is used. This
growing stack will overwrite the register banks above bank 0 be
sure to set the SP to a number above those of any working
registers the program may use.

 The programmer may choose any other bank by setting RS0
and RS1 as desired; this bank change is often done to “save” one
bank and choose another when servicing an interrupt or using a
subroutine. The programmer may elect to use the absolute numeric
address number for an SFR or may use a symbol (name) for the
SFR. For example, the following instructions both Move a constant
number into port 1:

MOV 90h, #0A5h
 MOV P1, #0A5h

 The A51 assembler, supplied with this book, “looks up” the
actual address of an SFR when the programmer uses an SFR
symbol. We shall use both methods of specifying SFRS in this to
emphasize the fact that SFRS are internal RAM addresses.

 The Moves made possible using direct, immediate and
register addressing modes are as follows :

Mnemonic Operation

MOV A, add Copy data from direct address add to register A

MOV add, A Copy data from register A to direct address add

MOV Rr, add Copy data from direct address add to register Rr

MOV add, Rr Copy data from register Rr to direct address add

MOV add, #n Copy immediate data byte n to direct address add

MOV add 1,
add 2

Copy data from direct address add2 to direct
address add 1

 166

 The following table show example of MOV opcodes using
direct, immediate, and registers addressing modes:

Mnemonic Operation

MOV A, 80h Copy data from the port 0 pins to register

MOV 80h, A Copy data from register A to the port 0 latch

MOV 3Ah, #3Ah
Copy immediate data byte 3Ah to RAM location
3Ah

MOV R0, 12h Copy data from RAM location 12h to register R0

MOV 8Ch, R7 Copy data from register R7 to timer 0 high byte

MOV 5Ch, A Copy data from register A to RAM location 5Ch

MOV 0a8h, 77h Copy data from RAM location 77h to IE register

13.4.4 Indirect Addressing Mode

 For all the addressing modes covered to this point. The
sources or destination of the data is an absolute number or a name.
Inspection of the opcode reveals exactly what the address are of
the destination and source. For example, the opcodeMOV A, RT
say that the A register will get a copy of whatever data is in register
R7; MOV 33h, # 32h Moves the hex number 32 to hex RAM
address 33.

 The indirect addressing mode uses a register to hold the
actual address that will finally be used in the data Move; the
register itself is not the address, but rather the number in the
register. Indirect addressing for MOVopcodes uses register R0 to
R1; often called a data pointer, to hold the address of one of the
data locations in RAM from address ooh to 7fh. The number that is
in the pointing register (Rp) cannot be known unless the history of
the register is known. The mnemonic symbol used for indirect
addressing is the “act” sign, which is printed as @.

 The Moves made possible using immediate, direct, register,
and indirect modes are as follows :

Mnemonic Operation

MOV @Rp, #n Copy the immediate byte n to the address in Rp

MOV @Rp, add Copy the contents of add to the address in Rp

MOV @Rp, A Copy the data in A to the address in Rp

MOV add, @ Rp Copy the contents of the address in Rp to add

MOV add, @ Rp Copy the contents of the address in Rp to A

 167

 The following list shows examples of MOVopcodes using
immediate, register, and indirect modes :

Mnemonic Operation

MOV A, @R0
Copy the contents of the address in R0 to the A
register

MOV @R1, #35h Copy the number 35h to the address in R1

MOV add, @ R0 Copy the contents of the address in R0 to add

MOV @ R1, A Copy the contents of A to the address in R1

MOV @R0, 80h
Copy the contents of the port 0 pins to the address
in R0

13.5 EXTERNAL DATA MOVES

 It is possible to expand RAM and ROM memory space by
adding external memory chips to the 8051 microcontroller. The
external memory can be as large as 64 k for each of the RAM and
ROM memory areas. Opcodes that access this external memory
always use indirect addressing to specify the external memory.

 Figure 3 shows that register R0 R1, and the aptly named
DPTR can be used to hold the address of the data byte in external
RAM. R0 and R1 are limited to external RAM address ranges of
00h to 0FFh. While the DPTR register can address the maximum
RAM space of 0000h to FFFFh.

 168

 An X is added to the MOV mnemonic to serve as a reminder
that the data move external to 8051.

Mnemonic Operation

MOVX A, @Rp
Copy the contents of the external address in
Rp to A

MOVX A, @ DPTR
Copy the contents of the external address in
DPTR to A

MOVX, @ Rp, A
Copy data from A to the external address in
Rp

MOVX, @ DPTR, A
Copy data from A to the external address in
DPTR

Code Memory Read Only Moves
 There are times when access to a preprogrammed mass of
data is needed, such as when using tables of predefined bytes.
This data must be permanent to be of repeated use and is stored in
the program ROM. Access to this data is made possible by using
indirect addressing and A register in conjunction with either the PC
or DPTR, as shown in fig. In both cases, the number in register A is
added to the pointing register to form the ROM address so formed
and placed in the A register. The original data in A lost, and the
addressed data takes its place.

 The letter C is added to the MOV mnemonic to highlight the
use of opcodes for moving data from the source address in the
code ROM to the A register in the 8051

Mnemonic Operation

MOVC A,@A
+ DPTR

Copy the code byte, found at the ROM address
formed by adding A and the DPTR to A

MOVC A, @ A
+ PC

Copy the code byte, found at the ROM address
formed by adding A and the PC to A

The DPTR and PC are not changed; the A register contains the
ROM byte found at the address formed. The following table shows
example of code ROM moves using register and indirect
addressing modes :

 169

Mnemonic Operation

MOV DPTR, #1234h Copy the immediate number 1234h to the DPTR

MOV A, #56h Copy the immediate number 56h to A

MOVC A, @A +
DPTR

Copy the contents of address 128h to A

MOVC A, @A + PC
Copies the contents of address 4059h to A if the
PC contained 4000h and A contained 58h when
the opcode is executed.

13.6 SUMMARY

 To use the pins of port 0 as both input and output ports, each
pin must be connected externally to a 10K ohm pull-up resister.

 ALE indicates if P0 has address or data. When ALE = 0, it

provides data D0-D7, but when ALE = 1 it has address A0-A7.

 In contrast to port 0, port P1, P2 & P3 does not need any pull-up

resistors since it already has pull-up resistors internally.
 When the 8051 is connected to external memory, P2 is used for

the upper 8 bits of the 16 bit address, and it cannot be used for
I/O.

 P3.0 and P3.1 are used for the RxD and TxD serial

communications signals. Bits P3.2 and P3.3 are set aside for
external interrupts. Bits P3.4 and P3.5 are used for timers 0 and

1. finally P3.6 and P3.7 are used to provide the WR and RD
signals of external memories connected in 8051 based systems.

 When the 8051 executes an immediate data Move, the program

counter is automatically incremented to point to the byte (S)
following the opcode byte in the program memory.

 A data MOV does not alter the contents of the data source

address.

 All 128 bytes of internal RAM and the SFRS may be a

addressed directly using the single-byte address assigned to
each RAM location and each special function register.

 Only one bank of working registers is active at any given time.

The PSW special-function register holds the bank-select bits,
RS0 and RS1, which determine which register bank is in use.

 170

 The mnemonic symbol used for indirect addressing is the “act”
sign, which is printed as @.

 The 8051 has four arithmetic flags : the carry (c), Auxiliary carry

(AC), over flow (OV), and parity (P).

13.7 REVIEW QUESTIONS

Q.1 Explain Port 0 in detail.
Q.2 Explain the Dual role of Port 0.
Q.3 Explain Port 1 in detail.
Q.4 Explain Port 2 in detail.
Q.5 Explain Port 3 in detail.
Q.6 Explain different addressing modes in 8051 with two

examples of each.
Q.7 Explain immediate addressing mode in 8051 in detail.
Q.8 Explain direct addressing mode in 8051 in detail.
Q.7 Explain indirect addressing mode in 8051 in detail.

13.8 REFERENCE

 The 8051 Microcontroller by Kenneth J. Ayala, Publisher:

Thomson Delmar Learning

 The 8051 Microcontroller And Embedded Systems Using

Assembly And C, 2/E By Mazidi and Mazidi, Publisher:
Pearson Education India



 171

14

ARITHMETIC & LOGICAL OPERATION

Unit Structure

14.1 Introduction

14.2 Flags

14.3 Incrementing and Decrementing

14.4 Addition

14.5 Subtraction

14.6 Multiplication and Division

14.7 Decimal Arithmetic

14.8 Logical Instructions

14.9 Internal RAM Bit Addresses

14.10 SFR Bit Addresses

14.11 Bit – Level Boolean Operations

14.12Rotate and Swap Operations

14.13 Summary

14.14 Review Question

14.15 Reference

After studying this chapter you should be able to
 Understand addition, subtraction, multiplication and division
 Understand the logic of programs
 Do the assembly language programming
 Understand bit level Boolean operation

14.1 INTRODUCTION

Applications of microcontrollers often involve performing

mathematical calculations on the data in order to alter program flow
and modify program actions. The domain of the microcontroller is
that of controlling events as they change. A sufficient number of
mathematical opcodes must be provided, so that calculations
associated with the control of simple processes can be done.

 172

14.2 FLAGS

 The 8051 has several dedicated latches, or flags, that store
result of arithmetic operations. Opcodes are available to alter
program flow based on the state of the flags. Not all instructions
change the flags but many a programming error has been made by
a forgetful programmer who overlooked an instruction that does
change a flag. The 8051 has four arithmetic flags : the carry (c),
Auxiliary carry (AC), over flow (OV), and parity (P).

14.2.1 Instructions Affecting Flags
 The C, AC, and OV flags are arithmetic flags, they are set to
1 or cleared to 0 automatically, depending on the outcomes of the
following instructions. The following instruction set includes all
instructions that modify the flags and is not confined to arithmetic
instructions.

INSTRUCTION MNEMONIC FLAGS AFFECTED

ADD C AC OV

ADDC C AC OV

ANL C, direct C

CJNE C

CLR C C = 0

CPL C C = C

DA A C

DIV C = 0 OV

MOV C, direct C

MUL C = 0 OV

ORL C, direct C

RLC C

RRC C

SETB C C = 1

SUBB C AC OV

However, that the flags are all stored in the PSW. Any
instruction that can modify a bit or a byte in that register (MOV, SET
B, XCHetc) changes the flags. A flag may be used for more than on
type of result. For example, the C flag indicates a carry out of the
lower byte position and indicates a borrow during subtraction. The
instruction that last affects a flag determines the use of that flags.
The parity flag is affected by every instruction executed. The P flag

 173

will be set to a 1 if the number of 1‟s in the „A‟ register is odd and
will be set to 0 if the number of 1‟s is even. All 0‟s in „A‟ yield a 1‟s
count of 0, which is considered to be even. Parity check is an
elementary error-checking method and is particularly valuable when
checking data received via the serial port.

14.3 INCREMENTING AND DECREMENTING

 The simplest arithmetic operations involve adding or
subtracting a binary 1 and a number. These simple operations
become very powerful when coupled with the ability to repeat the
operations that is to INCrement or DECrement – be INCremented
or DECremented. No math flags (C, AC, OV) are affected. The
following table lists the increment and decrement mnemonics.

Mnemonic Operation

INC A Add a one to the A register

INC Rr Add a one to register Rr

INC add Add a one to the direct address

INC@ Rp Add a one to the contents of the address in Rp

INC DPTR Add a one to the 16-bit DPTR

DEC A Subtract a one from register A

DEC Rr Subtract a one from register Rr

DEC add Subtract a one from the contents of the direct address

DEC @
Rp

Subtract a one from the contents of the address in
register Rp

 Note that increment and decrement instructions that operate
on a port direct address alter the latch for that port. The following
table shows examples of increment and decrement arithmetic
operations.

Mnemonic Operation

MOV A, # 3h A = 3Ah

DEC A A = 39 h

MOV R0, #15h R0 = 15h

MOV 15h, # 12h Internal RAM address 15h = 12h

INC @ R0 Internal RAM address 15h = 13h

DEC 15h Internal RAM address 15h = 12h

INC R0 R0 = 16h

MOV 16h, A Internal RAM address 16h = 39h

 174

INC @ R0 Internal RAM address 16h = 3Ah

MOV DPTR, # 12FFh DPTR = 12FFh

INC DPTR DPTR = 1300h

DEC 83h DPTR = 1200h (SFR 83h is the DPH byte)

14.4 ADDITION

 All addition is done with the A register on the destination of
the result. All addressing modes may be used for the source. An
immediate number, a register, a direct address, and an indirect
address some instructions include the carry flag as an additional
source of a single bit that is included in the operation at the least
significant bit position.

The following table lists the addition mnemonics.

Mnemonic Operation

ADD A, #n
Add A and the immediate number n; put the sum in
A

ADD A, Rr Add A and register Rr; put the sum in A

ADD A, add Add A and the address contents; put the sum in A

ADD A, @
Rp

Add A and the contents of the address in Rp; put
the sum in A

 Note that the C flag is set to 1 if there is a carry out of bit
position 7; it is cleared to 0 otherwise. The AC flag is set to 1 if
there is a carry out of bit position 3; it is cleared otherwise. The OV
flag is set to 1 if there is a carry out of bit position 7, but not bit
position 6 or if there is a carry out of bit position 6 but not position 7,
which may be expressed as the logical operation.
OV=C7 XORC6

14.4.1 Unsigned and Signed Addition
 The programmer may decide that the numbers used in the
program are to be unsigned numbers - that is numbers that are 8
bit positive binary numbers ranging from 00h to FFh. Alternatively,
the programmer may need to use both positive and negative signed
numbers.

 Signed numbers use bit 7 as a sign bit in the most significant
byte (MSB). Bits 0 to 6 of the MSB, and any other bytes, express
the magnitude of the number. Signed numbers use a 1 in bit
position 7 of the MSB as a negative sign and a 0 as a positive sign.
Further, all negative numbers are not in true form, but are in two‟s
complement form.

 175

 In signed form, a single byte number may range in size from
10000000b, which is – 128d, to 0111 1111 b, which is +127d. the
number 0000 0000 b is 000d and has a positive sign. So there are
128d negative numbers and 128 d positive numbers. The C and OV
flags have been included in the 8051 to enable the programmer to
use either numbering scheme.

 Adding or subtracting unsigned numbers may generate a
carry flag when the sum exceeds FFH or a Borrow flag when the
minuend is less than the subtrahend. The OV flag is not used for
unsigned addition and subtraction. Adding or subtracting signed
numbers can lead to carries and borrows in a similar manner, and
to overflow conditions as a result of the actions of the sign bits.

14.4.2 Unsigned Addition
 Unsigned numbers make use of the carry flag to detect when
the result of an ADD operation is a number larger than FFh. If the
carry is set to 1 after an ADD, then the carry can be added to a
higher order byte so that the sum is not lost. For instance.

95d = 01011111b = 5Fh
189d = 10111101b = BDh

284d = 1) 00011100b = 284d 1) 1Ch

 Where indicates the state of the C flag. The C flag is set to 1
to account for the carry out from the sum. The program could add
the carry flag to another byte that forms the second byte of a larger
number.

14.4.3 Signed Addition
 Signed numbers may be added two ways : Addition of like
signed numbers and addition of unlike signed numbers if unlike
signed numbers are added then, it is not possible for the result to
be larger than – 128 d or +127 d, and the sign of the result will
always be correct. For example :

-001d = 11111111b = FFh
+027d = 00011011b = 1Bh

+026d = 1) 00011010b = +026d 1) 1Ah

 Here, there is a carry from bit 7 so the carry flag is 1. There
is also a carry from bit 6, and the OV flag is 0. For this condition, no
action need be taken by the program to correct the sum. If positive
numbers are added, there is the possibility that the sum will exceed
+127d, as demonstrated in the following example:

+100 d = 01100100b = 64h
+ 050 d = 00110010b = 32h

+ 150 d = 0) 10010110b = -106d 0) 96h

 176

 Ignoring the sign of the result, the magnitude is seen to be
+22d, which would be correct if we had some way of accounting for
the +128d, which, unfortunately, is larger than a single byte can
hold. There is no carry from bit 7 and the carry flag is 0; there is a
carry from bit 6 so the OV flag is 1.

 An example of adding two positive numbers that do not
exceed the positive limit is this :

+ 045 d = 00101101b = 2 Dh
+ 075 d = 01001011b = 4 Bh

+ 120 d = 0) 01111000b = 120 d 0) 78 h

 Note that there are no carries from bits 6 or 7 of the sum; the
carry and OV flags are both 0. the result of adding two negative two
negative numbers together for a sum that does not exceed the
negative limit is shown in this example :

- 030 d = 11100010b = E2h
- 050 d = 11001110b = CEh

- 080 d = 1) 10110000b = -080d 1) B0h

 Here, there is a carry from bit 7 and the carry flag is 1, there
is a carry from bit 6 and the OC flag is 0. These are the same flags
as the case for adding unlike numbers; no corrections are needed
for the sum. When adding two negative numbers whose sum does
exceed – 128 d, we have :

- 070 d = 10111010b = BAh
- 070 d = 10111010b = BAh

- 140 d = 1) 01110100b = +116d 1) 74h

 Or, the magnitude can be interpreted as -12d, which is the
remainder after a carry out of -128d. in this example, there is a
carry from bit position 7, and no carry from bit position 6, so the
carry and the OV flags are set to 1. The magnitude of the sum is
correct; the sign bit must be changed to A 1.

 From these examples the programming actions needed for
the C and OV flags are as follows :

FLAGS
ACTION

C OV

0 0 None

0 1 Complement the sign

1 0 None

1 1 Complement the sign

 177

 A general rule is that if the OV flag is set and then
complement the sign. The OV flag also signals that the sum
exceeds the largest positive or negative numbers thought to be
needed in the program.

14.4.4 Multiple – Byte Signed Arithmetic
 The nature of multiple – byte arithmetic for signed and
unsigned numbers is distinctly different from single – byte
arithmetic. Using more than one byte in unsigned arithmetic means
that carries or borrows are propagated from low-order to high order
bytes by the simple technique of adding the carry to the next
highest byte for addition and subtracting the borrow from the next
highest byte for subtraction.

 Signed numbers appear to behave like unsigned numbers
until the last byte is reached. For a signed numbers the seventh bit
of the highest byte is the sign; if the sign is negative, then the entire
number is in two‟s complement form.

 For example, using a 2-byte signed number we have the
following examples :

+ 32767 d = 01111111 11111111 b = 7FFFh
+ 00000 d = 00000000 00000000b = 0000 h
- 00001 d = 11111111 11111111 b = FFFFh

- 32768 d = 10000000 00000000 b = 80000 h

 Note that the lowest byte of the numbers 00000 d and -
32768 d are exactly alike, as are the lowest bytes for +32767 d and
-00001 d. For multi-byte signed number arithmetic, then, the lower
bytes are treated as unsigned numbers. All checks for overflow are
done only for the highest order byte that contains the sign. An
overflow at the highest order byte is not usually recoverable. The
programmer has made a mistake and probably has made no
provisions for a number larger than planned. Some error
acknowledgement procedure, or user notification, should be
included in the program if this type of mistake is a possibility.

 The preceding examples show the need to add the carry flag
to higher order bytes in signed and unsigned addition operations.
Opcodes that accomplish this task are similar to the ADD
mnemonics. A C is appended to show that the carry bit is added to
the sum in bit position 0.

 178

The following table lists the add with carry mnemonics :

Mnemonic Operation

ADDC A. #n
Add the contents of A, the immediate number n and
C flag; put the sum in A

ADDC A,
add

Add the contents of A. the direct address contents,
and the C flag; put the sum in A

ADDC A, Rr
Add the contents of A, register Rr, and the C flag;
put the sum in A

ADDC A,
@Rp

Add the contents of A. the contents of the indirect
address in Rp, and the C flag; put the sum in A

 Note that the AC and OV flags behave exactly as they do for
the ADD commands. The following table shows examples of ADD
and ADDC multiple byte signed arithmetic operations.

Mnemonic Operation

MOV A,# 1Ch A = 1 Ch

MOV R5, # 0A 1h R5 = A 1h

ADD A, R5 A = BDh; C = 0, OV = 0

ADD A, R5 A = 5Eh; C = 1, OV = 1

ADD A, # 10h A = 6Fh; C = 0, OV = 0

ADD A, # 10h A = 7Fh; C = 0, OV = 0

14.5 SUBTRACTION

 Subtraction can be done by taking the two‟s complement of
the number to be subtracted, the subtrahend, and adding it to
another number, the minuend. The 8051, however, has commands
to perform direct subtraction of two signed or unsigned numbers.
Register A is the destination address for subtraction. All four
addressing modes may be used for source addresses. The
commands treat the carry flag as a borrow and always subtract the
carry flat as part of the operation.

 179

The following table lists the subtract mnemonics :

Mnemonic Operation

SUBB A, #n
Subtract immediate number n and the C flag
from A; put the result in A

SUBB A, add
Subtract the contents of add and the C flag
from A; put the result in A

SUBB A, Rr
Subtract Rr and the C flag from A; put the
result in A

SUBB A, @ Rp
Subtract the contents of the address In Rp
and the C flag from A; put the result in A

 Note that the C flag is set if a borrow is needed into bit 7 and
reset otherwise. The AC flag is set if a borrow is needed into bit 3
and reset otherwise. The OV flag is set if there is a borrow into bit 7
and not bit 6 or if there is a borrow into bit 6 and bit 7. As in the
case for addition, the OV flag is the XOR of the borrows into bit
positions 7 and 6.

14.5.1 Unsigned and Signed Subtraction
 Again, depending on what is needed, the programmer may
choose to use bytes as signed or unsigned numbers. The carry flag
is now thought of as a Borrow flag to account for situations when a
larger number is subtracted form a smaller number. The OV flag
indicates results that must be adjusted whenever two numbers of
unlike signs one subtracted and the result exceeds the planned
signed magnitudes.

14.5.2 Unsigned Subtraction
 Because the C flag is always subtracted from A along with
the source byte, it must be set to 0 if the programmer does not want
the flag included in the subtraction. If a multi – byte subtraction is
done the C flag is cleared for the first byte and then included in
subsequent higher byte operations.

 The result will be in true form, with no borrow if the source
number is smaller than A, or in two‟s complement form, with a
borrow if the source is larger than A. these are not signed number
as all 8 bits are used for the magnitude. The range of numbers is
from positive 255 d (c = 0, A = FFh) to negative 255 d (C = 1,
A = 01h).

The following example demonstrates subtraction of a larger
number from a smaller number.

 015 d = 0000 1111 b = 0Fh
SUB B 100 d = 011 00 100 b = 64 h

 - 085 d 1) 10101011 b = 171 h = 1) ABh

 180

 The C flag is set to 1, and the OV flag is set to 0. The two‟s
complement of the result is 085 d. The reverse of the example
yields the following result :

 100 d = 01100100 b = 64 h0Fh
SUB B 115 d = 00000000 b = OFh

 - 085 d 0) 01010101 b = 085 d 0) 55h

 The C flag is set to 0, and the OV flag is set 0. the
magnitude of the result is in true form

14.5.3 Signed Subtraction
 As is the case for addition two combinations of unsigned
numbers are possible when subtracting: subtracting numbers of like
and unlike signs. When number of like sign are subtracted, it is
impossible for the result to exceed positive or negative magnitude
limits of + 127 d or – 128 d, so the magnitude and sign of the result
do not need to be adjusted, as shown in the following example :

 + 100 d = 01100100b (carry flag = 0
before SUB B)

= 64 h

SUB B + 126 d = 01111110b = 7E h

 - 026 d 1) 11100110b = 085 d DE6h

 There is a borrow into bit positions 7 and 6; the carry flag is
set to 1, and the OV flag is cleaned. The following example
demonstrates using two negative numbers.

 - 61 d = 11000011 b (carry flag = 0
before SUB B)

= C3 h

SUB B - 116 d = 10001100b = 8 C h

 + 055 d 0) 00110111 b = 055 d DE6h

 There are no borrows into bit positions 6 or 7, so the OV and
carry flags are cleared to 0. An overflow is possible when
subtracting numbers of opposite sign because the situation
becomes one of adding numbers of like signs, as can be
demonstrated in the following example :

 - 099 d = 10011101 b (carry flag = 0

before SUB B)
= 9 Dh

SUB B + 100 d = 01100100 b = 64 h

 - 199 d = 0) 00111001 b = + 057 d 0) 39 h

 Here, there is a borrow into bit position 6 but not into bit
position 7; the OV flag is set to 1, and he carry flag is cleared to 0.
Because the OV flag is set to 1, the result must be adjusted. In this

 181

case, the magnitude can be interpreted as the two‟s complement of
71 d, the remainder after a carry out of 128 d form 199 d. The
magnitude is correct, and the sing needs to be corrected to a 1.

The following example shows a positive overflow.

 + 087 d = 01010111 b (carry flag = 0
before SUB B)

= 575 h

SUB B - 052 d = 11001100 b = CCh

 + 139 d = 1) 10001011 b = - 117 d 1) 8 Bh

 Here, there is a borrow into bit position 6 or 7; the OV flag
and the carry flag are both set to 1. Again the answer must be
adjusted because the OV flag is set to 1. The magnitude can be
interpretedas a +011d, the remainder from a carry out of 128 d. the
sign must be changed to a binary 0 and the OV condition dealt with.

 The general rule is that if the OV flag is set to 1, then
complement the sign bit. The OV flag also signals that the result is
greater than – 128d or +127 d. again, it must be emphasized, when
an overflow occurs in a program, an errors has been made in the
estimation of the largest number needed to successfully operate
the program. Theoretically the program could resize every number
used, but this extreme procedure could tend to hinder the
performance of the microcontroller.

 Note that for all the examples in the section, it is assumed
that the carry flag = 0 before the SUB B. The carry flat must be 0
before any SUB B operation that depends on C = 0 is done.

The following table lists examples of SUB B multiple – byte
signed arithmetic operations.

Mnemonic Operation

MOV 0D0H,# 00h Carry flag = 0

MOV S, # 3Ah A = 3Ah

MOV 45h # 13h Address 45h = 13h

SUBB A, 45h A = 27h; C = 0, OV = 0

SUBB A, 45h A = 14h; C = 0, OV = 0

SUBB A, # 80h A = 94h; C = 1, OV = 1

SUBB A, # 22h A = 71h; C = 0, OV = 0

SUBB A, # 0FFh A = 72h; C = 1, OV = 0

 182

14.6 MULTIPLICATION AND DIVISION

 The 8051 has the capability to perform 8 bit integer
multiplication and division using the A and B registers. Register B is
used solely for these operations and has no other use except as a
location in the SFR space of RAM that could be used to hold data.
The A register holds 1 byte of data before a multiply or divide
operation, and 1 of the result bytes after a multiply or divide
operation.

 Multiplication and division treat the numbers in registers A
and B as unsigned. The programmer must devise ways to handle
signed numbers.

14.6.1 Multiplication
 Multiplication operations use registers A and B as both
source and distinction addresses for the operation. The unsigned
number in register A is multiplied by the unsigned number B, as
indicated in the following table.

Mnemonic Operation

MUL AB
Multiply A by B; put the low-order byte of the product
in A, put the high-order byte in B

 The OV flag will be set if AXB >FFh. Setting the OV flag
does not mean that an error has occurred. Rather, it signals that
the number is larger than 8 bits, and the programmer needs to
inspect register B for the high- order byte of the multiplication
operation. The carry flag is always cleared to 0. The largest
possible product is F E01 h when both A and B contain FFh.
Register A contains 01h and register B contains FEh after
multiplication of FFh by FFh. The OV flag is set to 1 to signal that
register B contains the high-order byte of the producer, the carry
flag is 0.

 The following list given examples of MUL multiple-byte
arithmetic operations :

Mnemonic Operation

MOV A,# 7Bh A = 7Bh

MOV 0F0h, # 0Ah A = 02h

MUL AB A = 00h and B = F6h; OV Flag = 0

MOV A; #0FEh A = FEh

MUL AB A = 14h and B = F4h; OV = Flag = 1

 183

14.6.2 Division
 Division operations use registers A and B as both source
and destination addresses for the operation. The unsigned number
in register A is divided by the unsigned number in register B, as
indicated in the following table :

Mnemonic Operation

DIV AB
Divide A by B; put the integer part of quotient in
register A and the integer part of the remainder in B

 The OV flag is cleared to 0 unless B holds ooh before the
DIV. Then the OV flag is set to 1 to show division by 0. the contents
of A and B, when division by 0 is attempted, are undefined. The
carry flag is always reset.

 Division always results in integer quotients and remainders,
as shown in the following example :

1 213
12 9 213 12 17 9

1 017

A d
quotient and remainder d

B d
when done in hex :

1 0 5
9

1 011

A D h
C quotient and remainder

B h

 The following table lists examples of DIV multiple – byte
arithmetic operations :

Mnemonic Operation

MOV A,# 0FFh A = FFh (255d)

MOV 0F0h, # 2Ch B = 2C (44d)

DIV AB A = 05h and B = 23h [255d = (5 44) + 35]

DIV AB A = 00h and B = 05h [05d = (0 35) + 5]

DIV AB A = 00h and B = 00h [00d = (0 5) + 0]

DIV AB A = ?? and B = ??; OV flag is set to one

14.7 DECIMAL ARITHMETIC

 Most 8051 applications involve adding intelligence to
machines where the hexadecimal numbering system works
naturally. There are instances, however, when the application
involves interacting with humans, who insist on using the decimal
number system. In such cases, it may be more convenient for the
programmer to use the decimal number system to represent all
numbers in the program.

 184

 Four bits are required to represent the decimal numbers
from 0 to 9 (0000 to 1001) and the numbers are often called binary
coded decimal (BCD) numbers. Two of these BCD numbers can
then be packed into a single byte of data.

 The 8051 does all arithmetic operations in pure binary.
When BCD numbers are being used the result will often be a non-
BCD number, as shown in the following example :

49 BCD = 01001001 b = 49h

+ 38 BCD = 00111000 b = 38 h

87 BD = 10000001 b = 81 BCD = 81 h

Note that to adjust the answer, an 06d needs to be added to

the result. The opcode that adjusts the result of BCD addition is the
decimal adjust A for addition (DA A) command, as shown in the
following table :

Mnemonic Operation

DA A
Adjust the sum of two packed BCD numbers found in

A register; leave the adjusted number in A.

 The C flag is set to 1 if the adjusted number exceeds 99
BCD and set to 0 otherwise. The DA A instruction makes use of the
AC flag and the binary sums of the individual binary nibbles to
adjust the answer to BCD. The AC flag has no other use to the
programmer and no instructions – other than a MOV or a direct bit
operation to the PSW – affect the AC flag.

 It is important to remember that the DA A instruction
assumes the added numbers were in BCD before the addition was
done. Adding hexadecimal numbers and then using DA A will not
convert the sum to BCD. The DA Aopcode only works when used
with ADD or ADDC opcodes and does not give correct adjustments
for SUB B, MUL, or DIV operations. The programmer might best
consider the ADD or ADDC and DA A as a single instruction and
use the pair automatically when doing BCD addition in the 8051.

 185

 The following table gives examples of BCD multiple byte
arithmetic operations.

Mnemonic Operation

MOV A, 42h A = 42 BCD

ADD A, # 13h A = 55h; C = 0

DA A A = 55h; C = 0

ADD A, # 17h A = 6Ch; C = 0

DA A A = 72BCD; C = 0

ADDC A, # 34h A = A6h; C = 0

DA A A = 06BCD; C = 1

ADDC A, # 11h A = 18 BCD; C = 0

DA A A = 18 BCD; C = 0

14.8 LOGICAL INSTRUCTIONS

14.8.1 Byte – Level Logical Operations
 The byte – level logical operations are all four addressing
modes for the source of a data byte. The A register or a direct
address in internal RAM is the destination of the logical operation
result. Keep in mind that all such operations are done using each
individual bit of the destination and source bytes. These operations,
called byte level Boolean operations because the entire byte is
affected, are listed in the following table :

Mnemonic Operation

ANL A, # n
AND each bit of a with the same bit of immediate
number n; put the results in A

ANL A, add
AND each bit of A with the same bit of the direct
RAM address; put the results A

ANL A. Rr
AND each bit of A with the same bit of register Rr;
put the results in A

ANL A, @Rp
AND each bit of A with the same bit of the contents
of the RAM address contained in Rp; put the results
in A

ANL add, A
AND each bit of A with the direct RAM address; put
the results in in the direct RAM address.

ANL, add, # n
AND each bit of the RAM address with the same bit
in the number n; put the result in the RAM address

 186

ORL A, #n
OR each bit of A with the same bit of n; put the
results in A

ORL A, add
OR each bit of A with the same bit of the direct RAM
address; put the results in A

ORL A, Rr
OR each bit of A with the same bit of register Rr; put
the results in A

ORL A, @Rp
Or each bit of A with the same bit of the contents of
the RAM address contained in Rp; put the results in
A

ORL add, A
OR each bit of A with the direct RAM address; put
the results in the direct RAM address.

ORL add, #n
Or each bit of the RAM address with the same bit in
the number n, put the result in the RAM address

XRL A, #n
XOR each bit of A with the same bit of n; put the
results in A

XRL A, add
 XOR each bit o A with the same bit of the direct
RAM address; put the results in A

XRL A, Rr
XOR each bit of A with the same bit of register Rr,
put the results in A

XRL A, @ Rp
XOR each bit of A with the same bit of the contents
of the RAM address contained in Rp; put the results
in A

XRL add, A
XOR each bit of A with the direct RAM address; put
the results in the direct RAM address.

XRL add, #n
XOR each bit of the RAM address with the same bit
in the number n; put the result in the RAM address

CLR A Clear each bit of the A register to zero

CPL A
Complement each bit of A; every I becomes a 0, and
each 0 becomes a 1

 Note that no flags are affected by the byte – level logical
operation unless the direct. Ram address is the PSW. Many of
these byte – level operations use a direct address, which can
include the port SFR addresses, as a destination. The normal
sources of data from a port are the port pins; the normal destination
for a port data is the port latch. When the destination of a logical
operation is the direct address of a port, the latch register, not the
pins, is used both as the source for the original data and then the
destination for the altered byte of data. Any port operation that must
first read the soured data, logically operate on it, and then wrote it
back to the source (now the destination) must use the latch. Logical

 187

operations that use the port as a source, but not as a destination,
use the pins of the port as the source of the data.

 For example, the port 0 latch contains FFh, but the pins are
all driving transistor bases and are close to ground level. The
logical operation.
 ANL P0, # 0Fh
Which is designed to turn the upper nibble transistor off, read FFh
from the latch, ANDS it with 0Fh to produce 0FH as a result, and
then write it back to the latch to turn these transistor off. Reading
the pits produce the result Ooh, turning all transistors off, in error.
But, the operations.
 ANL A, P0
Produce A = 00h by using the port 0 pin data, which is 00h

 The following table shows byte-level logical operation
examples :

Mnemonic Operation

MOV A, #0FFh A = FFh

MOV R0, #77h R0 = 77h

ANL A, R0 A = 77h

MOV 15h, A 15 h = 77 h

CPL A A = 88 h

ORL 15 h, #88 h 15 h = FF h

XRL A, 15h A = 77 h

XRL A, R0 A = 00 h

ANL A, 15 h A = 00 h

ORL A, R0 A = 77 h

CLR A A = 00h

XRL 15 h, A 15 h = FF h

XRL A, R0 A = 77 h

Note that instructions that can use the SFR port latches as

destinations are ANL, ORL and XRL

14.8.2 Bit – Level Logical Operations
 Certain internal RAM and SFR‟s can be addressed by their
byte addresses or by the address of each bit within a byte. Bit
addressing is very convenient when you wish to alter a single bit of
byte, in a control register for instance, without having to wonder
what you need to do avoid altering some other crucial bit of the
same byte. The assembler can also equate bit addresses to labels
that make the program more readable. For example, bit 4 of TCON
can become TR0, a label for the timer 0 run bit.

 The ability to operate on individual bits creates the need for
an area of RAM that contains data addresses that hold a single bit.
Internal RAM byte addresses 20h to 2Fh serve this need and are

 188

both byte and bit addressable. The bit addresses are numbered
from 00h to 7Fh to represent the 128 d bit addresses (16 d byte s ×
8 bits) that exists from byte addresses 20h to 2Fh. Bit 0 of byte
address 20h is bit address 00h, and bit 7 of byte address 2Fh is bit
address 7Fh. You must know you bits from your bytes to take
advantage of this RAM area.

14.9 INTERNAL RAM BIT ADDRESSES

 The availability of individual bit addresses in internal RAM
makes the use of the RAM very efficient when storing bit
information. Whole bytes do not have to be used up to store one or
two bits of data. the correspondence between byte and bit
addresses is shown in the following table.

BYTE ADDRESS (HEX) BIT ADDRESSES (HEX)

20 00-07

21 08-0F

22 10-17

23 18-1F

24 20-27

25 28-2F

26 30-37

27 38-3F

28 40-47

29 48-4F

2A 50-57

2B 58-5F

2C 60-67

2D 68-6F

2E 70-77

2F 78-7F

 Interpolation of this table shows, for example, the address of
bit 3 of internal RAM byte address 2Ch is 63h, the bit address of bit
5 of RAM byte address 28h

 189

14.10 SFR BIT ADDRESSES

 All SFR‟s may be addressed at the byte level by using the
direct address assigned to it, but not all of the SFR‟s are
addressable at the bit level. The SFR‟s that are also bit
addressable form the bit address by using the five most significant
bits that identify the bit position 0 (LSB) to 7 (MSB).

 The bit- addressable SFR and the corresponding bit
addresses are as follows :

SFR DIRECT ADDRESS (HEX) BIT ADDRESSES (HEX)

A 0E0 0E0-0E7

B 0F0 0F0-0F7

IE 0A8 0A8-0AF

IP OB8 0B8-0BF

P0 80 80-87

P1 90 90-97

P2 0A0 0A0-0A7

P3 0B0 0B0-0B7

PSW 0D0 0D0-0D7

TCON 88 88-8F

SCON 98 98-9F

 The patterns in this table show the direct addresses
assigned to the SFR byte all have bits 0-3 equal to zero so that the
address of the byte is also the address of the LSB. For example, bit
0E3h is bit 3 of the „A‟ register. The carry flag which is bit 7 of the
PSW, is bit addressable as 0D7h. The assembler can also
“understand” more descriptive mnemonics, such as P0-5 for bit 5 of
port 0, which is more formally addressed as 85 h. For example, to
clear the A register to 00h, we write:
 CLR A

Where as to clear bit 5 of the A register, the instruction is :
 CLR ACC, 5

 It is unfortunate that Intel choose to use the same
mnemonics to clear both the A register and to clear an A register
addressable bit. Moreover, the instruction CLR ACC and CLR AA, 0
accomplish the same thing: clearing bit 0 of the A register. The SET
B mnemonics is much less ambiguous. The other byte and bit

 190

mnemonic is CPL (complement) Figure 4 shows all the bit –
addressable SFRs and the function of each addressable bit:

14.11 BIT – LEVEL BOOLEAN OPERATIONS

 The bit – level Boolean logical opcodes operate on any
addressable RAM or SFR bit. The carry flag in the PSW special –
function register is the destination for most of the opcodes because
the flag can be tested.

 The following table lists the Boolean bit level operations :

Mnemonic Operation

ANL C, b AND C and the addressed bit; put the result in C

ANL C, /b
AND C and the complement of the addressed bit; put
the result in C; the addressed bit is not altered

ORL C,b OR C and the addressed bit; put the result in C

ORL C, /b
OR C and the complement of the addressed bit; put
the result in C; the addressed bit is not altered

CPL C Complement the C flag

CPL b Complement the addressed bit

CLR C Clear the C flag to zero

CLR b Clear the addressed bit to zero

MOV C, b Copy the addressed bit to the C flag

MOV b, C Copy the C flag to the addressed bit

SETB C Set the flag to one

SETB b Set the addressed bit to one

 Note that no flags, other than the C flag, are affected, unless
the flag is an addressed bit. As is the case for byte-logical
operations when addressing ports an destinations a port bit used a
destination for a logical operation is part of the SFR latch, not the
pin. A port bit used as a source only is a pin, not the latch. The bit
instructions that can use a SFR latch bit are : CLR CPL, MOV and
SET B.

 191

 Bit-level logical operation examples are shown in the
following tables :

Mnemonic Operation

SETB 00h Bit 0 or RAM byte 20h = 1

MOV C, 00h C = 1

MOV 7Fh, C Bit 7 of RAM byte 2Fh = 1

ANL C,/00h C = 0; bit 0 of RAM byte 20h = 1

ORL C, 00h C = 1

CPL 7Fh Bit 7 of RAM byte 2Fh = 0

CLR C C = 0

ORL C,/7Fh C = 1; bit 7 of RAM byte 2Fh = 0

14.12 ROTATE AND SWAP OPERATIONS

 The ability to rotate data is useful for inspecting bits of a byte
without using individual bit opcodes. The A register can be rotated
one bit position to the left for right with or without including the C
flag in the rotation. If the C flag is not included, then the rotation
involves the eight-bits of the A register. If the C flag is included,
then nine bits are involved in the rotation. Including the C flag
enables the programmer to construct rotate of as a rotate
operations involving any number of bytes.

 The SWAP instruction can be thought of as a rotation of
nibbles in the A register. Figure 5 diagrams the rotate and swap
operations which are given in the following table :

Mnemonic Operation

RL A
Rotate the A register one bit position to the left; bit A0
to bit A1, A1 to A2, A2 to A3, A3 to A4, A4 to A5, A5 to
A6, A6 to A7 and A7 to A0

RLC A

Rotate the A register and the carry flag, as a ninth bit,
one bit position to the left; bit A0 to bit A1, A1 to A2,
A2 to A3, A3 to A4, A4 to A5, A5 to A6, A6 to A7, A7
to the carry flag and the carry flag to A0

RR A
Rotate the A register one bit position to the right; bit
A0 to bit A7, A6 to A5, A5 to A4, A4 to A3, A3 to A2,
A2 to A1 and A1 to A0

 192

RRC A

Rotate the A register and the carry flag, as a ninth bit, one
bit position to the right; bit A0 to the carry flag, carry flag to
A7, A7 to A6, A6 to A5, A5 to A4, A4 to A3, A3 to A2, A2
to A1, and A1 to A0

SWAP
A

Interchange the nibbles of register A; put the high nibble in
the low nibble position and the low nibble in the high
nibble position

Note that no flags, other than the carry flag in RRC and RLC,

are affected. If the carry is used as part of a rotate instruction, the
state of the carry flag should be known before the rotate is done.

 The following table shows examples of rotate and swap
operations :

14.13 SUMMARY

 193

 Signed numbers use a 1 in bit position 7 of the MSB as a
negative sign and a 0 as a positive sign.

 The OV flag also signals that the sum exceeds the largest
positive or negative numbers thought to be needed in the
program.

 Multiplication and division treat the numbers in registers A
and B as unsigned.

 Certain internal RAM and SFR‟s can be addressed by their
byte addresses or by the address of each bit within a byte.

 All SFR‟s may be addressed at the byte level by using the
direct address assigned to it, but not all of the SFR‟s are
addressable at the bit level.

 The A register can be rotated one bit position to the left for
right with or without including the C flag in the rotation.

14.14 REVIEW QUESTIONS

Q.1 Explain the different flags in 8051
Q.2 Explain ADD instruction with suitable example.
Q.3 Explain SUB instruction with suitable example.
Q.4 Explain MUL instruction.
Q.5 Explain DIV instruction.
Q.6 Explain different Rotate instruction.

14.15 REFERENCE

 The 8051 Microcontroller by Kenneth J. Ayala, Publisher:

Thomson Delmar Learning

 The 8051 Microcontroller And Embedded Systems Using

Assembly And C, 2/E By Mazidi and Mazidi, Publisher:
Pearson Education India



 194

15

JUMP, CALL AND SUBROUTINES

15.1 Introduction

15.2 The Jump and Call Program Range

15.3 Relative Range

15.4 Jumps

15.5 Calls and Subroutines

15.6 Interrupts and Returns

15.7 Summary

15.8 Review Questions

15.9 Reference

After studying this chapter you should be able to
 Describe the jump and call program range of the 8051

microcontroller.
 Study different types of jump instructions.
 Understand the call instructions and subroutines
 Study different types of return instructions.

15.1 INTRODUCTION

 The jumps and calls discussed in this chapter are decision
codes that alter the flow of the program by examining the results of
the action codes and changing the contents of the program counter.
A jump permanently changes the contents of the program counter if
certain program conditions exist. A call temporarily changes the
program counter to allow another part of the program to run. Jumps
and calls may also be generically referred to as “branches”, which
emphasizes that two divergent paths are made possible by this
type of instruction.

15.2 THE JUMP AND CALL PROGRAM RANGE

A jump or call instruction can replace the contents of the

program counter with a new program address number that causes
program execution to begin at the code located at the new address.
The difference, in bytes, of this new address from the address in

 195

the program where the jump or call is located is called the range of
the jump or call. For example, if a jump instruction is located at
program address 0100h, and the jump causes the program counter
to become 0120h, then the range of the jump is 20h bytes.

 Jump or call instructions may have one of three ranges: a
relative range of +127d, -128d bytes from the instruction following
the jump or call instruction; an absolute range on the same 2K byte
page as the instruction following the jump or call; or along range of
any address from 0000h to FFFFh, anywhere in program memory.
Figure 1 shows the relative range of all the jump instructions.

FIGURE 1: Jump Instruction Ranges

 196

15.3 RELATIVE RANGE

 Jump that replaces the PC (program counter) content with a
new address that is greater than (the address following the jump
instruction by 127 or less) or less than (the address following the
jump by 128 or less) is called a relative jump. Schematically, the
relative jump can be shown as follows: -

 They are so named because the address that is placed in
program counter is relative to the address where the jump occurs. If
the absolute address of the jump instruction changes, then the
jump address changes also but remains the same distance away
from the jump away from the jump instruction. The address
following the jump is used to calculate the relative jump because of
the action of the PC. The PC is incremented to point to the next
instruction before the current instruction is executed. Thus, the PC
is set to the following address before the jump instruction is
executed, or in the vernacular: “before the jump is taken.”

Relative jumping has two advantages:
1] Only one byte of data need be specified, either in positive format
for jumps ahead in the program or in 2‟s complement negative
format for jumps behind. The jump address displacement byte can
then be added to the PC to get the absolute address. Specifying
only one byte saves program bytes & speeds up program
execution.

2] The program that is written using relative jumps can be located
anywhere in the program address space without re-assembling the
code to generate absolute addresses.

 The disadvantage of using relative addressing is the
requirement that all addresses jumped be within a range of +127d, -
128d bytes of the jump instruction. This range is not a serious

 197

problem. Most jumps form program loops over short code ranges
that are within the relative address capability. Jumps are the only
branch instructions that can use the relative range.

 If jump beyond the relative range are needed, then a relative
jump can be done to another relative jump until the desired address
is reached. This need is better handled, however, by the jumps that
are covered in the next sections.

15.3.1 Short Absolute Range
Absolute range makes use of the concept of dividing memory into
logical divisions called “pages”. Program memory may be regarded
as one continuous stretch of addresses from 0000h to FFFFh. Or, it
may be divided into a series of pages any convenient binary size,
such as 256 bytes, 2K bytes, 4K bytes, and so on.

 The 8051 program memory is arranged as 2K byte pages,
giving a total of 32d (20h) pages. The hexadecimal address of each
page is shown in the following table:

PAG
E

ADDRESS(H
EX)

PAG
E

ADDRESS(H
EX)

PAG
E

ADDRESS(H
EX)

00 0000-07FF 0B 5800-5FFF 16 B000-B7FF

01 0800-0FFF 0C 6000-67FF 17 B800-BFFF

02 1000-17FF 0D 6800-6FFF 18 C000-C7FF

03 1800-1FFF 0E 7000-77FF 19 C800-CFFF

04 2000-27FF 0F 7800-7FFF 1A D000-D7FF

05 2800-2FFF 10 8000-87FF 1B D800-DFFF

06 3000-37FF 11 8800-8FFF 1C E000-E7FF

07 3800-3FFF 12 9000-97FF 1D E800-EFFF

08 4000-47FF 13 9800-9FFF 1E F000-F7FF

09 4800-4FFF 15 A000-A7FF 1F F800-FFFF

0A 5000-57FF 15 A800-AFFF

 Inspection of the page numbers shows that the upper five
bits of the program counter hold the page number, and the lower
eleven bits hold the address within each page. An absolute address
is formed by taking the page number of the instruction following the
branch and attaching the absolute page range address of eleven
bits to it to form the 16-bit address.

 Branches on page boundaries occur when the jump or call
instruction finishes at X7FFh or XFFFh. The next instruction starts

 198

at X800h or X000h, which places the jump or call address on the
same page as the next instruction after the jump or call. The page
change presents no problem when branching ahead but could be
troublesome if the branch is backwards in the program. The
assembler should flag such programs as errors, so adjustments
can be made by the programmer to use a different type of range.

 Absolute range addressing has the same advantages as
relative addressing; fewer bytes are needed and the code is
relocatable as long as the relocated code begins at the start of a
page. Absolute addressing has the advantage of allowing jumps or
calls over longer programming distances than does relative
addressing.

15.3.2 Long Absolute Range

Addresses that can access the entire program space from
0000h to FFFFh use long range addressing. Long range addresses
require more bytes of code to specify and are relocatable only at
the beginning of 64K byte pages. Since we are limited to a nominal
ROM address range of 64K bytes, the program must be re-
assembled every time a long range address changes and these
branches are not generally relocatable.

 Long range addressing has the advantage of advantage of
using the entire program address space available to the 8051. It is
most likely to be used in large programs.

15.4 JUMPS

 The ability of a program to respond quickly to changes in
conditions depends largely upon the number and types of jump
instructions available to the programmer. The 8051 has a rich set of
jumps that can operate at the bit and byte levels. These jump
opcodes are one reason the 8051 is such a powerful
microcontroller.

 Jumps operate by testing for conditions that are specified in
the jump mnemonic. If the condition is true, then the jump is taken –
that is, the program counter is altered to the address that is part of
the jump instruction. If the condition is false, then the instruction
immediately following the jump instruction is executed because the
program counter is not altered. Keep in mind that the conditions of
true dose not mean a binary 1 and that false does not mean binary
0. The condition specified by the mnemonic is either true or false.

15.4.1 Bit Jumps

 199

Bit jumps all operate according to the status of the carry flag in the
PSW or the status of any bit-addressable location. All bit jumps are
relative to the program counter.

 Jump instructions that test for bit conditions are shown in the
following table:

Mnemonic Operation
JC radd Jump relative if the carry flag is set to 1
JNC radd Jump relative if the carry flag is reset to 0
JB b,radd Jump relative if addressable bit is set to 1
JNB b,radd Jump relative if addressable bit is reset to 0
JBC b,radd Jump relative if addressable bit is set, and

clear the addressable bit to 0

Note that no flags are affected unless the bit in JBC is a flag bit in
the PSW. When the bit used in a JBC instruction is a port bit, the
SFR latch for that port is read, tested, and altered.

15.4.2 Byte Jumps
Byte jumps – jump instructions that test bytes of data – behave as
bit jumps. If the condition that is tested is true, the jump is taken; if
the condition is false, the instruction after the jump is executed. All
byte jumps are relative to the program counter.

 The following table lists examples of byte jumps:

Mnemonics Operation
CJNE A,add,radd Compare the contents of the A register

with the contents of the Direct address;
if they are not equal , then jump to the
relative address; set the carry flag to 1 if
A is less than the contents of the direct
address; otherwise, set the carry flag to
0

CJNE A,#n,radd Compare the content of the A resistor
with the immediate number n; if they are
not equal, then jump to the relative
address; set the carry flag to 1 if A is
less than the number; otherwise, set the
carry flag to 0

CJNE Rn,#n,radd Compare the contents of register Rn
with the immediate number n; if they are
not equal, then jump to the relative
address; set the carry flag to 1 if Rn is
less than the number; otherwise, set the
carry flag to 0

 200

CJNE @Rp,#n,radd Compare the contents of the address
contained in register Rp to the number
n; if they are not equal, then jump to the
relative address; set the carry flag to 1 if
the contents of the address in Rp are
less than the number; otherwise, set the
carry flag to 0

DJNZ Rn,radd Decrement register Rn by 1 and jump to
the relative address if the result is not
zero; no flags are affected

DJNZ add,radd Decrement the direct address by 1 and
jump to the relative address if the result
is not 0; the flags are affected unless the
direct address is the PSW

JZ radd Jump to the relative address if A is 0;
the flags and the A register are not
changed

JNZ radd Jump to the relative address if A is not
0; the flags and the A register are not
changed

Note that if the direct address used in a DJNZ is a port, the port

SFR is decremented and tested for 0

15.4.3 Unconditional Jumps
Unconditional jumps do not test any bit or byte to determine
whether the jump should be taken. The jump is always taken. All
jump ranges are found in this group of jumps, and these are the
only jumps that can jump to any location in memory.

 The following table shows examples of unconditional jumps:

Mnemonics Operation
JMP @A+ DPTR Jump to the address formed by adding A to

the DPTR; this is an unconditional jump
and will always be done; the address can
be anywhere in program memory; A, the
DPTR, and the flags are unchanged.

AJMP sadd Jump to absolute short range address sad;
this is an unconditional jump and is always
taken; no flags are affected

LJMP ladd Jump to absolute long range address ladd;
this is an unconditional

 Jump and is always taken; no flags are
affected

SJMP radd Jump to relative address radd; this is an
unconditional jump and is always taken; no
flags are affected.

 201

NOP Do nothing and go to the next instruction;
NOP (no operation) is used to waste time in
a software timing loop; or to leave room in a
program for later additions; no flags are
affected

15.5 CALLS AND SUBROUTINES

 The method of changing program execution is using
“interrupt” signals on certain external pins or internal registers to
automatically cause a branch to a smaller program that deals with
the specific situation. When the event that caused the interruption
has been dealt with, the program resumes at the point in the
program where the interruption took place. Interrupt action can also
be generated using software instructions named calls.

 Call instructions may be included explicitly in the program as
mnemonics or implicitly included using hardware interrupts. In both
cases, the call is used to execute a smaller, stand alone program,
which is termed a routine or, more often, a subroutine.

15.5.1 Subroutines
 A subroutine is a program that may be used many times in
the execution of a larger program. The subroutine could be written
into the body of main program everywhere it is needed, resulting in
the fastest possible code execution. Using a subroutine in this
manner has several serious drawbacks.

 Common practice when writing a large program is to divide
the total task among many programmers in order to speed
completion. The entire program can be broken into smaller parts
and each programmer given a part to write and debug. The main
program can then call each of the parts, or subroutines, that have
been developed and tested by each individual of the team.

 Even if the program is written by one individual, it is more
efficient to write an oft-used routine once and then call it many
times as needed. Also, when writing a program, the programmer
does the main part first. Calls to subroutines, which will be written
later, enable the larger task to be defined before the programmer
becomes bogged down in the details of the application.

15.5.2 Calls and the Stack
 A call, whether hardware or software initiated, causes a jump
to the address where the called subroutine is located. At the end of
the subroutine the program resumes operation at the opcodes
address immediately following the call. As calls can be located
anywhere in the program address space and used many times,

 202

there must be an automatic means of storing the address of the
instruction following the call so that program execution can continue
after the subroutine has executed.

 The stack area of internal RAM is used to automatically store
the address, called the return address, of the instruction found
immediately after the call. The stack pointer register holds the
address of the last space used on the stack. It stores the return
address above this place, adjusting itself upward as return address
is stored. The term “stack” and “stack pointer” are often used
interchangeably to designate the top of the stack area in RAM that
is pointed to by the stack pointer.

Figure 2 diagram the following sequence of events:

1. A call opcodes occurs in the program software, or an interrupt is
generated in the hardware circuitry.

2. The return address of the next instruction after the call instruction
or interrupt is found in the program counter.

3. The return address bytes are pushed on the stack, low byte first.

4. The stack pointer is incremented for each push on the stack.

5. The subroutine address is placed in the program counter.

6. The subroutine address is executed.

7. A RET (return) opcode is encountered at the end of the
subroutine.

 FIGURE 2 Storing and Retrieving the Return Address.

8. Two pop operations restore the return address to the PC from

the stack area in internal RAM.
9. The stack pointer is decremented for each address byte pop.
 All of these steps are automatically handled by the 8051

hardware. It is the responsibility of the programmer to ensure that
the subroutine ends in a RET instruction and that the stack does
not grow up into data areas that are used by the program.

 203

15.5.3 Calls and Returns
Calls use short or long range addressing: returns have no
addressing mode specified but are always long range. The
following table shows examples of call opcodes:

Mnemonic Operation
ACALL sadd Call the subroutine located on the same

page as the address of the opcodes
immediately following the ACALL
instruction; push the address of the
instruction immediately after the call on
the stack

LCALL ladd Call the subroutine located anywhere in
program memory space; push the
address of the instruction immediately
following the call on the stack

RET Pop two bytes from the stack into the
program counter

Note that no flags are affected unless the stack pointer has been
allowed to erroneously reach the address of the PSW special
function register.

15.6 INTERRUPTS AND RETURNS

 An interrupt is a hardware-generated call. Just as a call
opcodes can be located within a program to automatically access a
subroutine, certain pins on the 8051 can cause a call when external
electrical signals on them go to a low state. Internal operations of
the timers and the serial port can also cause an interrupt call to
take place.

 The subroutines called by an interrupt are located at fixed
hardware addresses. The following table shows the interrupt
subroutine addresses.

INTERRUPT ADDRESS (HEX) CALLED
IE0 0003
TF0 000B
IE1 0013
TF1 001B
SERIAL 0023

 When an interrupt call takes place, hardware interrupt
disable flip-flops are set to prevent another interrupt of the same
priority level from taking place until an interrupt return instruction
has been executed in the interrupt subroutine. The action of the
interrupt routine is shown in table below.

 204

Mnemonic Operation
RETI Pop two bytes from the stack into the

program counter and reset the interrupt
enable flip-flops

 Note that the only difference between the RET and RETI
instructions is the enabling of the interrupt logic when RETI is used.
RET is used at the ends of subroutines called by an opcodes. RETI
is used by subroutines called by an interrupt.

 The following program examples use a call to a subroutine.

ADDRESS MNEMONIC COMMENT
MAIN: MOV 81h, #30h ; set the stack pointer to
 30h in RAM
 LCALL SUB ; push address of NOP;
 PC = #SUB; SP = 32h
 NOP ;return from SUB to this
 opcodes
 . . .
 . . .
SUB MOV A, #45h ;SU loads A with
 45h and returns
 RET ;pop return address to PC;
 SP = 30h

 In the following example of an interrupt call to a routine,
timer 0 is used in mode 0 to overflow and set the timer 0 interrupt
flag. When the interrupt is generated, the program vector to the
interrupt routine, resets the timer 0 interrupt flag, stop the timer, and
returns.

ADDRESS MNEMONIC COMMENT
 .0RG 0000h ;begin program at 0000
 AJMP OVER ;jump over interrupt
 subroutine
 .0RG 000Bh ;put timer 0 interrupt
 subroutine here
 CLR 8Ch ;stop timer 0; set TRO = 0
 RETI ;return and enable
 interrupt structure

OVER: MOV 0A8h, #82h ; enable the timer 0
 interrupt in the IE
 MOV 89h, #00h ;set timer operation, mode
 0
 MOV 8Ah, #00h ;clear TL0
 MOV 8Ch, #00h ;clearTH0
 SET 8Ch ;start timer 0; set TR0 = 1

 205

;
;
;
; the program will continue on and be interrupted when the timer
has timed out

15.7 SUMMARY

 Jump alter program flow by replacing the PC counter

contents with the address of the jump address.

 Jumps have the following ranges:

Relative : up to PC +127 bytes, PC – 128 bytes away from
PC
Absolute short : anywhere on a 2K-byte page
Absolute long : anywhere in program memory

 Jump opcodes can test an individual bit, or a byte, to check
for conditions that make the program jump to a new program
address.

 Bit jumps all operate according to the status of the carry flag

in the PSW or the status of any bit-addressable location.

 Unconditional jumps do not test any bit or byte to determine
whether the jump should be taken. The jump is always
taken. All jump ranges are found in this group of jumps, and
these are the only jumps that can jump to any location in
memory.

15.8 REVIEW QUESTIONS

Q.1 Explain the relative range.
Q.2 What do you mean by absolute short range and long range?
Q.3 Explain bit and byte jump instructions.
Q.4 Explain subroutine program.
Q.5 Explain different return instructions.

15.9 REFERENCE

 The 8051 Microcontroller by Kenneth J. Ayala, Publisher:

Thomson Delmar Learning

 The 8051 Microcontroller And Embedded Systems Using

Assembly And C, 2/E By Mazidi and Mazidi, Publisher:
Pearson Education India



 206

16

8051 PROGRAMS

1. To search a number from a given set of numbers. The end

of the data is indicated by 00.

Memory
Location

Label Instruction Comment

0000 MOV R1,#30H Starting location of the list

0002 L1 MOV A,@R1 Number copied into
accumlater

0003 CJNE A,#00,L3 Compared for the end of a
list with 00H

0006 L3 CJNE
A,#0AH,L2

Compared with No. 0AH

0009 MOV A,R1 Moving the content of R1 to
A

000A MOV R2,A Store the number

000B HERE SJMP HERE End of the program

000D L2 INC R1 Get the next number

000E JMP L1 Jump to L1

2. Finding the average of signed numbers.

Memory
Location

Label Instruction Comment

0000 MOV R0,#30H Starting location of a list

0002 MOV R2,#00H Initialize R2 to store carry

0004 MOV R1,#05H Counter is set to 05.

0006 MOV B,R1 Moving the content of R1 to
B

0008 MOV A,#00H Clear the accumulator

 207

000A L2 ADD A,@R0 Adding the value to
accumulator

000B JB OV, HERE Check overflow flag

000E JNC L1 If there is no carry jump to
L1

0010 INC R2 If there is carry, increment
R2

0011 L1 DJNZ R1, L2 Decrement R1, if it is not
equal to 0, jump L2

0013 DIV AB Divide accumulator with B

0014 MOV 40H,R2 Copying R2 to memory
address 40H

0016 MOV 41H,A Copying A to memory
address 41H

0018 MOV 42H,B Copying B to memory
address 42H

001B HERE SJMP HERE End of the program

2.A. Average of string of numbers.

Memory
Location

Label Instruction Comment

0000 MOV R0,#30H Starting location of a list

0002 MOV R2,#00H Initialize R2 to store carry

0004 MOV R1,#05H Counter is set to 05.

0006 MOV B,R1 Moving the content of R1 to
B

0008 MOV A,#00H Clear the accumulator

000A L2 ADD A,@R0 Adding the value to
accumulator

000B JNC L1 If there is no carry jump to
L1

000D INC R2 If there is carry, increment
R2

000E L1 DJNZ R1,L2 Decrement R1, if it is not
equal to 0, jump L2

0010 DIV AB Divide accumulator with B

 208

0011 MOV 40H,R2 Copying R2 to memory
address 40H

0013 MOV 41H,A Copying A to memory
address 41H

0015 MOV 42H,B Copying B to memory
address 42H

0018 HERE SJMP HERE End of the program

3. Multiplication of signed numbers.

Memory
Location

Label Instruction Comment

0000 MOV R1,#01H Store 01H in reg. R1

0002 MOV R0,#30H Initialize memory location

0004 MOV A,@R0 Number copied into
accumlater

0005 MOV R7,A Number copied into reg. R7

0006 RLC A Rotate accumulator to
check the carry

0007 JNC L1 If there is no carry, jump to
L1

0009 MOV A,@R0 Number copied into
accumlater

000A CPL A Taking 1st complement

000B INC A Taking 2‟s complement

000C INC R1 Increment reg. R1

000D L1 MOV A,R7 Number copied into reg. R7

000E INC R0 Getting the next number

000F MOV A,@R0 Number copied into
accumlater

0010 MOV B,A Number copied into reg. B

0012 RLC A Rotate accumulator to
check the carry

0013 JNC L2 If there is no carry, jump to
L2

 209

0015 CPL A Taking 1st complement

0016 INC A Taking 2‟s complement

0017 MOV B,A Number copied into reg.B

0019 DEC R1 Decrement the content of
R1

001A L2 MOV A,R7 Number copied from reg. R7
to A

001B MUL AB Multiplying content A & B

001C INC R0 Increment memory location
R0

001D MOV @R0,A Copying A to memory

001E INC R0 Increment memory location
R0

001F MOV @R0,B Copying B to memory

0021 INC R0 Increment memory location
R0

0022 MOV A,R1 Number copied from reg. R1
to A

0023 CJNE
A,#02H,L3

If A is not equal to 02H,
jump to L3

0026 MOV @R0,#01H If A is equal to 02H, store 01
at memory

0028 HERE SJMP HERE Short jump

002A L3 MOV @R0,#00H Store 00 at memory

002C JMP HERE Jump to HERE

4. Convert the BCD 0111 0101 number to two binary numbers
and transfer this number to registers.

Memory
Location

Label Instruction Comment

0000 MOV A,#75H Storing BCD no. in
accumulator

0002 MOV B,A Copying the number in reg. B

0004 ANL A,#0F0H Masking lower nibble

 210

0006 SWAP A A3-0 swap A7-4

0007 MOV 19H,A Store the number at 19H

0009 MOV A,B Copying original number in
accumulator

000B ANL A,#0FH Masking higher nibble

000D MOV 18H,A Store the number at 18H

000F HERE JMP HERE End of the program

5. To find y where y = x2 + 2x + 5 and x is between 0 and 9.

Memory
Location

Label Instruction Comment

0000 MOV R2,#0AH Store 0AH in reg. R2

0002 MOV R0,#60H Store 60H in reg. R2

0004 MOV R1,#70H Store 70H in reg. R2

0006 MOV R3,#00H Initialize R3 with 00H

0008 L1 MOV A,R3 Copying R3 to Accumulator

0009 MOV @R0,A Copying A to memory
address 60H

000A INC R3 Increment R3

000B INC R0 Increment R0

000C DJNZ R2,L1 If R2≠0AH, Jump to L1

000E MOV R2,#0AH Store 0AH in reg. R2

0010 MOV R0,#60H Store 60H in reg. R2

0012 MOV R1,#70H Store 70H in reg. R2

0014 L2 MOV A,@R0 Copying value from memory
address to A

0015 MOV B,A Copying A to reg. B

0017 MUL AB Multiplying A & B

0018 MOV @R1,A Copying A to memory

0019 MOV A,#02H Store 02H in Accumulator

001B MOV B,@R0 Copying value from memory
address to B

001D MUL AB Multiplying A & B

 211

001E ADD A,#05H Adding 05H To Accumulator

0020 ADD A,@R1 Adding content from
memory to A

0021 MOV @R1,A Copying A to memory
address

0022 INC R0 Increment R0

0023 INC R1 Increment R1

0024 DJNZ R2,L2 If R2 ≠ 0, jump to L2

0026 HERE JMP HERE End of program

6. Write a program to find the number of zeros in register R2

Memory
Location

Label Instruction Comment

0000 MOV R2,#0AH Store 0AH value in reg. R2

0002 MOV B,#00H Initialize reg. B with 00H

0005 MOV A,R2 Copy the content from R2 to A

0006 MOV R3,#08H Set the counter to 08H

0008 L2 RRC A Rotate A to check no. Of
zeroes

0009 JC L1 If carry=1, jump to L1

000B INC B If carry =0, increment reg. B

000D L1 DJNZ R3,L2 If R3 not equal to 0, jump to L2

000F MOV R1,B Store the answer in reg. R1

0011 HERE SJMP HERE End of program

7. Write a program to check if the accumulator is divisible by 8.

Memory
Location

Label Instruction Comment

0000 MOV
A,#10H

Store a number in Accumulator

0002 MOV
B,#08H

Store 08H in reg. B

0005 DIV AB

Divide A by B

 212

0006 MOV 40H,A

Store the answer at memory
address 40H

0008 MOV A,B

Copying remainder in reg. B to A

000A CJNE
A,#00H,L1

If remainder =00H, jump to L1

000D MOV
41H,#01H

If remainder ≠ 00H, Store 01H at
memory address 41H

0010 HERE SJMP
HERE

End of the program

0012 L1 MOV
41H,#00H

If remainder =00H, Store 00H at
memory address 41H

0015 JMP HERE



 213

Syllabus

F.Y.B.Sc. (IT), Sem - II,

 Microprocessor & Microcontrollers

Unit I : Internet and WWW

What is Internet? Introduction to Internet and its applications, E-mail,

telnet, FTP, e-commerce, video conferencing, e-business. Internet

service providers, domain name server, internet address

World Wide Web (WWW)

World Wide Web and its evolution, uniform resource locator (URL),

browsers – internet explorer, netscape navigator, opera, firefox, chrome,

mozilla, search engine, web saver-apache, IIS, proxy server, HTTP

protocol

Unit II : HTML and Graphics

HTML Tag Reference, global Attributes, Event Handlers, Document

Structure Tags, Formatting Tags, text Level formatting, Block Level

formatting, List Tags, Hyperlink tags, Images and Image maps, Table

tags, Form Tags, Frame Tags, Executable content tags

Imagemaps

What are Imagemaps? Client-side Imagemaps, Server-side Imagemaps,

Using Server-slide and Client-side Imagemaps together, Alternative text

for Imagemaps,

Tables

Introduction to HTML tables and theirstructure, The table tags, Alignment,

Aligning Entire Table, Alignment within a row, Alignment within a cell,

Attributes, Content Summary, Background Color, Adding a Caption,

Setting the width, Adding a border, Spacing within a cell, Spacing

 214

between the cells, Spanning multiple rows or columns, Elements that can

be placed in a table, Table Sections and column properties, Tables as a

design tool.

Frames

Introduction to Frames, Applications, Frames document, The

<FRAMESET> tag, Nesting <FRAMESET> tag, Placing content in frames

with the <FRAME> tag, Targeting named frames, Creating floating

frames, Using Hidden frames,

Forms

Creating Forms, The <FORM> tag, Named Input fields, The <INPUT>

tag, Multiple lines text windows, Drop down and list boxes, Hidden, Text,

Test Area, Password, File Upload, Button, Submit, Reset, radio,

Checkbox. Select, Option, Forms and Scripling, Action Buttons, Labelling

input files, Grouping related fields, Disabled and read-only fields, Form

field event handlers, Passing form data.

Style Sheets

What are style sheets? Why are style sheets valuable? Different

approaches to style sheets, Using Multiple approaches, Linking to style

information in s separate file, Setting up style information, Using the

<LINK> tag, Embedded style information, Using <STYLE> tag, Inline style

information.

Unit III : Java Script

Introduction, Client-Side JavaScript, Server-Side Java Script, Java Script

Objects, Java Script Security.

Operators

Assignment, Operators, Comparison Operators, Arithmetic Operators, %

(Modulus), ++ (Increment), -- (Decreemnt), - (Unary Negation), Logical

Operators, Short-Circuit Evaluation, String Operators, Special Operators,

: (Conditional operator), (Comma operator), delete, new, this, void

 215

Statements

Break, comment, continue, delete, do…while, export, for, for….in,

function, if….else, import, labeled, return, switch, var, while, with,

Core JavaScript (Properties and Methods of Each)

Array, Boolean, Date, Function, Math, Number. Object, String, resExp

Document and its associated objects

Document, Link, Area, Anchor, Image. Applet, Layer

Events and Event Handlers

General Information about Events, Defining Even Handlers, event,

onAbort, onBlur, onChange, onClick, onDblClick, ondragDrop, onError,

onFocus, onKeyDown, onKeyPress, onKeyUp. onLoad, onMouseDown,

onMouseMove, onMouseOut, onMouseOver, onMouseUp, onMove,

onReset, onResize, onSelect, onSubmit, onUnload

Unit IV : XML

Introduction to XML, Anatomy of an XML document, Creating XML

Documents, Creating XML DTDs, XML Schemas, XSL.

Unit V : PHP

Why PHP and MySQL?, Server-side web scripting, Installing PHP,

Adding PHP to HTML, Syntax and Variables, Passing information

between pages, Strings, Arrays and Array Functions, Numbers, Basic

PHP errors/problems.

Unit VI : Advanced PHP and MySQL

PHP/MySQL Functions, Displaying queries in tables, Building Forms from

queries, String and Regular Expressions, Sessions, Cookies and HTTP,

Type and Type Conversions, E-Mail

 216

Term Work and tutorial

Should contain minimum 5 assignments and two class tests

Practical : Should contain minimum 8 experiments

List of Practicals :

1. Design a web page using different text formatting tags

2. Design a web page with links to different pages and allow

navigation between pages.

3. Design a web page with Imagemaps

4. Design a web page with different tables. Design a webpage suing

table so that the content appeared well placed.

5. Design a web page using frames.

6. Design a web page with a form that uses all types of controls.

7. Design a website using style sheets so that the pages have uniform

style.

8. Using Java Script design a web page that prints factorial / Fibonacci

series / any given series.

9. Design a form with a test box and a command button. Using Java

script write a program whether the number entered in the text box is

a prime number or not.

10. Design a form and validate all the controls placed on the form using

Java Script.

11. Design a DTD, corresponding XML document and display it in

browser using CSS.

12. Design an XML document and display it in browser using XSL.

13. Design XML Schema and corresponding XML document.

14. Design a php page to process a form.

15. Design a php page for authenticating a user.

16. Design a complete dynamic website with all validations.



