
SYLLABUS

DATABASE MANAGEMENT SYSTEMS

Unit – I Introduction to Databases and Transactions

What is database system, purpose of database system, view of data, relational
databases, database architecture, transaction management,

Unit- II Data Models

The importance of data models, Basic building blocks, Business rules, The evolution
of data models, Degrees of data abstraction.

Unit-III Database Design ,ER-Diagram and Unified Modeling Language

Database design and ER Model:overview, ER-Model, Constraints, ER-Diagrams, ERD
Issues, weak entity sets, Codd’s rules, Relational Schemas, Introduction to UML

Relational database model: Logical view of data, keys, integrity rules.

Relational Database design: features of good relational database design, atomic
domain and Normalization (1NF, 2NF, 3NF, BCNF).

Unit- IV Relational Algebra and Calculus

Relational algebra: introduction, Selection and projection, set operations, renaming,
Joins, Division, syntax, semantics. Operators, grouping and ungrouping, relational
comparison.

Calculus: Tuple relational calculus, Domain relational Calculus, calculus vs algebra,
computational capabilities.

Unit- V Constraints, Views and SQL

What is constraints, types of constrains, Integrity constraints,

Views: Introduction to views, data independence, security, updates on views,
comparison between tables and views

SQL: data definition, aggregate function, Null Values, nested sub queries, Joined
relations. Triggers.

Unit-VI Transaction management and Concurrency control

Transaction management: ACID properties, serializability and concurrency control,
Lock based concurrency control (2PL, Deadlocks),Time stamping methods,
optimistic methods, database recovery management.

Books:

A Silberschatz, H Korth, S Sudarshan, “Database System and Concepts”, fifth Edition McGraw-Hill ,

Rob, Coronel, “Database Systems”, Seventh Edition, Cengage Learning.

Term Work and tutorial
Should contain 5 assignments and two class tests

Practical: Should contain minimum 8 experiments

Practicals

1) Design a Database and create required tables. For e.g. Bank, College Database
2) Apply the constraints like Primary Key , Foreign key, NOT NULL to the tables.
3) Write a sql statement for implementing ALTER,UPDATE and DELETE
4) Write the queries to implement the joins
5) Write the query for implementing the following functions: MAX(),MIN(),AVG(),COUNT()
6) Write the query to implement the concept of Intergrity constrains
7) Write the query to create the views
8) Perform the queries for triggers
9) Perform the following operation for demonstrating the insertion , updation and deletion

using the referential integrity constraints
10) Write the query for creating the users and their role.

1

INTRODUCTION TO DATABASE
MANAGEMENT SYSTEM

Unit Structure

1.0 Objectives
1.1 Introduction
1.2 What is Database Management System
1.3 History of Database System
1.4 Purpose of Database System
1.5 Advantages and Disadvantages of Database System
1.6 Summary
1.7 Model Questions

1.0 OBJECTIVES

1.1 INTRODUCTION

 In today’s world as the information technology has changed
rapidly, many computing applications deal with large amounts of
information regularly.

 As the end user applications has changed significantly in last
few decades, there is a challenge to store the large amount of

2

information, retrieve and manage this information in timely
manner.

 This can be achieving today by making use of services of
Database Management System (DBMS).

 Today DBMS not only used to insert, update and delete the data
stored in database.

 The job of DBMS system is to collect the data, give a systematic
representation to it and also provides ways for the data to be
modified or extracted by users or other programs.

 As the technology has grown rapidly in past four decades, today
DBMS has gain its own importance because the data has
brought online in the hands of end user through different
computer networking.

 Our world is driven with lot of exciting applications such as
multimedia databases, live streaming of data, digital had made
our life much easier to deal with data.

1.2 WHAT IS DATABASE MANAGEMENT SYSTEM

 A primary aim of the database system is to provide a convenient
and efficient way to store and retrieve data stored in a database.

 A database is a computer generated software program which
can be used to access the data stored in database in an
organised manner.

 The term database is a structured collection of data stored
which can be stored in digital form. Before the actual data is
stored in the database, we should clearly specify the schema of
the database and different techniques used to manipulate the
data stored in a database.

 Database shouldn’t only care about the insertion and
modification of the data in the database. At times, it should also
focus on how to protect the data stored in the database from
unauthorised access.

 DBMS must provide efficient techniques in order to protect the
data from accidental system crashes.

3

 If the data has to be shared among number of users there are
highly chances that the data might not remain consistent
because too many users might try to access it at same time and
may try to change the value.

 The DBMS must ensure that the chances of getting anomalous
results when the data is used by more than one set of user.
DBMS systems can be used extensively in the following fields

1. Transportation: DBMS system can be used for reservation or
cancellation of tickets and can be also used to check for the
schedules of incoming and outgoing flights.

2. Education: DBMS system can be used by different universities
to allow students take admission online, checking the status of
vacant seats, enrolment system can be done computerized etc.

3. Banking: DBMS system have completely changed the face of
the banking sector. Few decades ago, the banking system was
purely the paper based system have now transformed in
keeping less of paper work.

4. Sales: DBMS system allows the data to be stored in electronic
format by making use of relational databases which allows the
data to be stored in highly organised manner. This database
allows the information such as information about the customers,
products, sales, purchases etc to be stored in database.

5. Manufacturing: DBMS system allows the user to store
information about the production of good, the inventory details,
the total number of orders, supply chain information in database
so that it allows the decision makers to make critical decisions in
timely manner.

6. Human Resource: DBMS has made the life of HR team much
better by allowing the team to compute tax deductions,
employee wages, retrieving the details of the employees in
faster manner as compared to traditional paper based approach
which was time consuming.

Thus the growth of DBMS system has not only benefitted only to
the customers or employees in an organisation but it has touched
all the aspects of our lives.

4

1.3 HISTORY OF DATABASE SYSTEM

 The following are the historical perspective of DBMS system:

 In early 1960s, the first general purpose DBMS was designed
by Charles Bachman at General Electric, which was later, called
as IDS (Integrated Data Store).

 This IDS formed a groundwork for introduction of Network Data
Model, which was later, standardized by CODASYL
(Conference on Data Systems Languages).

 In late 1960s, IBM developed the IMS (Information Management
System) which was widely used.

 This IMS formed groundwork for introduction of Hiearchical Data
Model.

 By the joint venture of IBM and American Airlines, the SABRE
system was launched which help the people to reserve the
tickets.

 The new data representation framework was initially launched
by Edgar Codd, called the Relational data model.

 Both Bachman and Edgar Codd were felicitated by ACM Turing
Award in the year 1973 and 1981 for the outstanding
contribution in the field of database system.

 With the time passed by, the DBMS system has matured
significantly. As the development of relational DBMS has
reached to larger users and the number of benefits from the
same, it was widely accepted and many corporate houses
started using this system for their day to day activities.

 As the popularity of relational DBMS started increasing, soon
IBM, in early 1980s, has developed a SQL (Structured Query
Language) for relational databases through their SYSTEM/R
project.

 Later in late 1980s, SQL was standardized and the version
SQL-1999 was adopted by ANSI (American National Standard
Institute) and ISO (International Organization for
Standardization).

5

 Many developments were done on DBMS since its birth. The
concept of concurrent programming was introduced in DBMS
system which allowed the users to run their programs
concurrently.

 Later in 1999, James Gray was awarded by ACM Turing Award
for his contribution towards Database Transaction Systems.

 The period between 1980 and 1990s saw many advances in the
field of DBMS system. Several vendors try to build a system
where more stress is given on complex analysis of data within
an enterprise.

 Many complex data types such as images, texts etc, were
launched during this period and many complex queries are
given more emphasis.

 Over a period of time a new type of database system was
brought in which was known as Data Warehouse system.

 By the introduction of ERP (Enterprise Resource Planning) and
MRP (Management Resource Planning) packages, exciting new
features were added to existing database system.

 Many other packages like SAP, Baan, Oracle, PeopleSoft which
were user friendly, allowed the user to carry out their tasks
easily.

 Most significant change in DBMS is through integration of
DBMS with Internet which allowed DBMS to stored data
accessed through Web Browser.

 It allowed the user to write their queries through Web forms, and
the formatted output is tabulated through mark-up languages
like HTML.

 As more and more data grown over a period of time, it is really
challenging to maintain the consistency of data.

 Today we have multimedia databases, interactive video,
streaming data, video libraries has completely change in the
way in which data is stored which allowed the company to
simplify their decision making process.

6

1.4 PURPOSE OF DATABASE SYSTEM

Let us understand the need of database system with help of
following example.

 To see why database management system is necessary, let us
look at a typical “file processing system” supported by
conventional operating system.

 The application is a saving bank:

oSaving account and customer records are kept in permanent
system files.

oApplication programs are written to manipulate files to
perform following task.

1. To debit or credit an account.

2. To add a new account

3. To find the account balance.

4. To generate the monthly statements

 System programmers wrote these application programs to meet
the needs of the bank.

 The system must be developed as per the following procedure:

1. As per the necessity, the new application programs must be
needed as and when it is needed.

2. As per the requirement, the new permanent files are created.

3. After certain interval of time, the files may be stored in a
different format.

4. Many application programmers have written their respective
applications programs in different languages.

 File system has several disadvantages and the following
problems are associated with file system:

1. Data redundancy and inconsistency

o The major problem with file processing system is that it
maintains several versions of same file i.e.; duplication of
data is possible at multiple places.

7

o Also there are several copies of files are stored, if any one of
the file is changed, the different versions of same file may
not be updated which leads to inconsistency of data.

2. Difficulty in accessing the data

o Consider the airline reservation system. If the senior
management of company wants to access the information of
all its customers who are living in the same postal code, it
has to be done manually because current file processing
system does not allow the user to obtain this information.

o So in the above case, there are two options. Either the
application programmer has to write a new application
program to satisfy the unusual request or could get this
information manually.

o In former case, it doesn’t guarantee that the same query will
be asked and same application program would be used in
future.

o If a query changes, a new application program should be
written to get the needed information.

3. Data isolation

o One of the major problems with the file system is that the
data is scattered and stored in multiple locations and in
different formats.

o Hence in order to retrieve the needed information from
multiple location and in different formats is a very difficult to
proceed with the help of application program.

4. Concurrent access anomalies

o In order to speed up the performance of the system and
faster response to applications, many systems allow the user
to update the data concurrently.

o Suppose two users located at different locations wants to
book the tickets, there might be situation that both of the
people will be given the same seat because the data is
stored in multiple locations and both of them will be given a
seat from individual copy of the data.

8

o Therefore there should be some protection mechanism to
avoid this concurrent updates.

5. Security problems

o Every user in this system should be able to access the data
which he is allowed to access and not all the data.

o For example, the salesperson in an organization should be
allowed to access the data related to him and should not be
allowed to access data which is used HR team or finance
department in an organization.

o If the new constraints are added to avoid this kind of
unauthorized access, enforcing these constraints is difficult
because the existing application programs are added to the
system in an adhoc manner.

6. Integrity problems

o Data stored in the database should be allowed to satisfy
certain constraint checking.

o For eg, before adding a new employee in the Employee
table, if we check the age of the employee and if we apply
constraint such that only those employee whose age is
greater than 18 years should be allowed to enter in the table
which means that before the new data is inserted the age of
the employee should be calculated.

o When a new constraint such as one which is discussed
above is added, it becomes difficult to change the existing
programs to enforce the new constraints.

7. Atomicity problems

o Every application system is assumed to fail at some point in
near future.

o In many applications, if the system fails, the data should be
rolled back to the state before the failure occurs.

o Consider the customer is withdrawing some cash from the
ATM machine from his own account and if the failure
happens in the system, it should not happen that the amount
is deducted from customer account but the customer is not
getting any cash from the machine.

9

o In simple word the withdrawn should be atomic- it must be
happen in its entirely or not at all.

o Another disadvantage with file processing system is that it
becomes difficult to ensure atomicity.

1.5 ADVANTAGES AND DISADVANTAGES OF
DATABASE SYSTEMS

1.5.1. Advantages of Database Systems

The DBMS (Database Management System) is preferred
ever the conventional file processing system due to the following
advantages:

1. Controlling Data Redundancy

o In the conventional file processing system, every user group
maintains its own files for handling its data files. This may
lead to

• Duplication of same data in different files.
• Wastage of storage space, since duplicated data is stored.
• Errors may be generated due to updation of the same data in
different files.

• Time in entering data again and again is wasted.
• Computer Resources are needlessly used.
• It is very difficult to combine information.

2. Elimination of Inconsistency

o In the file processing system information is duplicated
throughout the system. So changes made in one file may be
necessary be carried over to another file. This may lead to
inconsistent data. So we need to remove this duplication of
data in multiple file to eliminate inconsistency.

o Let us consider the following example of student.

o Imagine that a particular student has opted for Embedded
system as one of the elective subject in Sem –V for TYBScIT
Sem V examination while filling up the examination form.

o If, after getting the hall ticket the student realize that rather
than expecting Embedded system as the choice of elective

10

subject in the hall ticket, if some other subject is highlighted,
it means that the data for that student has not correctly
inserted in the database.

o To avoid the above problem, there is a need to have a
centralize database in order to have this conflicting
information.

o On centralizing the data base the duplication will be
controlled and hence inconsistency will be removed.

3. Better service to the users

o A DBMS is often used to provide better services to the
users. In conventional system, availability of information is
often poor, since it normally difficult to obtain information in a
timely manner because our existing systems are not capable
to produce the same.

o Once several conventional systems are combined to form
one centralized database, the availability of information and
its updateness is likely to improve since the data can now be
shared and DBMS makes it easy to respond to anticipated
information requests.

o Centralizing the data in the database also means that user
can obtain new and combined information easily that would
have been impossible to obtain otherwise.

o Also use of DBMS should allow users that don't know
programming to interact with the data more easily, unlike file
processing system where the programmer may need to write
new programs to meet every new demand.

4. Flexibility of the System is Improved

o Since changes are often necessary to the contents of the
data stored in any system, these changes are made more
easily in a centralized database than in a conventional
system.

o Applications programs need not to be changed on changing
the data in the database.

11

5. Integrity can be improved

o Since data of the organization using database approach is
centralized and would be used by a number of users at a
time, it is essential to enforce integrity-constraints.

o In the conventional systems because the data is duplicated
in multiple files so updating or changes may sometimes lead
to entry of incorrect data in some files wherever it is
applicable.

o For example: - The example of Hall Ticket Generation
system that we have already discussed, since multiple files
are to maintained, as sometimes you may enter a value for
subject which may not exist. Suppose Elective Subjects can
have values (Embedded Systems, Advanced Java, Web
Designing etc) but we enter a value 'Mathematics -I' for it, it
may lead to database inconsistency.

o Even if we centralized the database it may still contain
incorrect data. For example: -

• Salary of full time clerk may be entered as Rs. 1500 rather
than Rs. 4500.

• A student may be shown to have borrowed library books
but has no enrollment.

o The above problems can be avoided by defining the
validation procedures whenever any update operation is
attempted.

6. Standards can be enforced

o Standards are easier to enforce in database systems
because all the data in database is access through
centralized DBMS.

o Here standards may relate to the naming of data, structure
of data, format of the data etc.

o Standardizing stored data formats is usually desirable for the
purpose of data interchange or migration between systems.

7. Security can be improved

o In conventional systems, applications are developed in an
adhoc manner.

12

o Often different system of an organization would access
different components of the operational data, in such an
environment enforcing security can be quiet difficult.

o Setting up of a database makes it easier to enforce security
restrictions since data is now centralized.

o It is easier to control who has access to what parts of the
database. Different checks can be established for each type
of access (retrieve, modify, delete etc.) to each piece of
information in the database.

o Consider an example of banking in which the employee at
different levels may be given access to different types of
data in the database.

o For example, a clerk may be given the authority to know only
the names of all the customers who have a loan in bank but
not the details of each loan the customer may have.

o This can be accomplished by giving the privileges to each
employee.

8. Organization's requirement can be easily identified

o All organizations have sections and departments and each
of these units often consider the work of their unit as the
most important and therefore consider their need as the
most important.

o Once a database has been setup with centralized control, it
will be necessary to identify organization's requirement and
to balance the needs of the competition units.

o So it may become necessary to ignore some requests for
information if they conflict with higher priority need of the
organization.

o It is the responsibility of the DBA (Database Administrator) to
structure the database system to provide the overall service
that is best for an organization.

o For example, a DBA must choose best file Structure and
access method to give fast response for the high critical
applications as compared to less critical applications.

13

9. Data Model must be developed

o Perhaps the most important advantage of setting up of
database system is the requirement that an overall data
model for an organization be build. In conventional systems,
it is more likely that files will be designed as per need of
particular applications demand.

o The overall view is often not considered. Building an overall
view of an organization's data is usual cost effective in the
long terms.

10. Provides backup and Recovery

o Centralizing a database provides the schemes such as
recovery and backups from the failures including disk crash,
power failures, software errors which may help the database
to recover from the inconsistent state to the state that
existed prior to the occurrence of the failure, though methods
are very complex.

1.5.1. Disadvantages of Database Systems

The following are the disadvantages of Database Systems

1. Database Complexity

The design of the database system is complex, difficult and is very
time consuming task to perform.

2. Substantial hardware and software start-up costs

Huge amount of investment is needed to setup the required
hardware and the softwares needed to run those applications.

3. Damage to database affects virtually all applications
programs

If one part of the database is corrupted or damaged because of
the hardware or software failure, since we don’t have many
versions of the file, all the application programs which are
dependent on this database are implicitly affected.

4. Extensive conversion costs in moving form a file-based
system to a database system

If you are currently working on file based system and need to
upgrade it to database system, then large amount of cost is

14

incurred in purchasing different tools, adopting different
techniques as per the requirement.

5. Initial training required for all programmers and user.

Large amount of human efforts, the time and cost is needed to
train the end users and application programmers in order to get
used to the database systems.

1.6 SUMMARY

o A Database Management system is the group of interrelated
data and a set of programs to access that data.

o DBMS must provide efficient techniques in order to protect the
data from accidental system crashes.

o A primary aim of the database system is to provide a convenient
and efficient way to store and retrieve data stored in a database.

o The DBMS must ensure that the chances of getting anomalous
results when the data is used by more than one set of user.

o DBMS system can be used in the fields such as transportation,
education, banking, sales, manufacturing, human resource etc.

o The first general purpose DBMS was developed by Charles
Bachman in early 1960s.

o Edgar Codd has suggested a new data representation
technique known as relational model.

o SQL 1999 was standardized by ANSI and ISO in late 1980s.
o Different disadvantages of file system with respect to database

system are listed below
1 Data redundancy and inconsistency.
2 Difficulty in accessing data
3 Data isolation
4 Concurrent data anomalies
5 Security problems
6 Integrity problems
7 Atomicity problems

o The following are the advantages of DBMS

1. Controlling Data redundancy
2. Elimination of inconsistency
3. Better services to the users
4. Better flexibility
5. Integrity is improved

15

6. Standards can be enforced.
7. Security can be improved etc.

1.7 MODEL QUESTIONS

1. What is the purpose of building a DBMS system?

2. Explain the history of Database system

3. What is the database system? Explain it with its

advantages and disadvantages

4. Compare between File systems and database systems

5. What are the limitations of File processing systems? How

that can be solved by using Database system?

1

2

INTRODUCTION TO RELATIONAL
DATABASE MANAGEMENT SYSTEM

Unit Structure
2.0 Objectives
2.1 Introduction to RDBMS
2.2 The Relational Model
2.3 Introduction to SQL
2.4 Working with relations of RDBMS
2.5 Advantages and Disadvantages of Relational Database

System
2.6 Summary
2.7 Model Questions

1.0 OBJECTIVES

2.1 INTRODUCTION TO RELATIONAL DATABASE
MANAGEMENT SYSTEM

o A relational DBMS is special system software that is used to
manage the organization, storage, access, security and integrity
of data.

o This specialized software allows application systems to focus on
the user interface, data validation and screen navigation.

o When there is a need to insert, modify, delete or display data,
the application system simply makes a "call" to the RDBMS.

2

o Although there are many different types of database
management systems, relational databases are by far the most
common.

o Other types include hierarchical databases and network
databases.

o Although database management systems have been around
since the 1960s, relational databases didn't become popular
until the 1980s when the power of the computer skyrocketed
and it became feasible to store data is sets of related tables and
provided real-time data access.

o A relational DBMS stores information in a set of "tables", each
of which has a unique identifier or "primary key".

o The tables are then related to one another using "foreign
keys". A foreign key is simply the primary key in a different
table.

o RDBMS are widely used in real life applications such as:
1. Airlines: It can be used to keep the status of the flights and

schedules and for reservations and cancellation of tickets.
2. Banking: It is useful in storing the customer information,

account details, loan details and banking transactions.
3. Universities: It is useful in storing the student information,

coarse registrations, grades etc.

2.2 THE RELATIONAL MODEL

o The relational model is a collections of relations required to build
a database. Informally, each relation resembles a table of
values or, to some extent, a "flat" file of records.

o In relational model, each row in the table consists of set of
related data values.

o In this model, each row in the table shares some reality which
corresponds to the real world entity or relationship.

o Every table and the columns present in the table is given a
unique table name and column names which can be used to
extract the relevant values from the tables.

o Note that in the given database, no two tables can have the
same name but across the database the table name can be the
same.

o Similarly, within the same table, no two columns can have the
same column name. A duplicate column names can be given
across the table.

3

o Before we proceed with more details on relational model,
consider the following example. We will also define various
terminologies associated with relational model.

o Consider the IDOLSYIT table given below

o Now let us understand the domain, tuples and attributes in brief
o A row of records in the given table is called as tuple. In the

above example, the individual records for students starting with
1000 to 1005.

o In the above example, the individual columns are called as
attributes of the system.

o The table itself is called as the relation.
o The data type describing the types of values that can appear in

each column is called a domain.
o In the above example, if we define the relation schema it would

look like this
IDOLSYIT(S_ID :integer, S_NAME : String, contact no :
integer, email : String)

o This says, for instance, that the field named sid has a
domain named string.

o We now turn to the instances of a relation. An instance of
a relation is a set of tuples, also called records, in which
each tuple has the same number of fields as the relation
schema.

o A relation instance can be thought of as a table in which
each tuple is a row, and all rows have the same number
of fields.

4

o We need to understand the different types of keys
associated with relational databases as follows

o Primary key: In every relational database, every table has
a particular column or set of columns whose value
uniquely identify each row in the table. Such a column is
called the primary key of the table.

o In our IDOLSYIT table, we can call S_ID as a primary key
because it can uniquely define the values from this table.

o The primary key has a different unique value for each
row in the table, so no two rows of a table with a primary
key are exact duplicates of one another.

o In a table, if every row in a given table is different from all
other rows is called the relation in mathematical terms.

o The term relational databases come because relations
are the base of a relational model.

o A column in one table whose value matches with the
primary key of another table is called as a foreign key of
the table.

2.3 INTRODUCTION TO SQL

o SQL is a standard computer database programming language
and its popularity has explored since past two decades.

o It is portable language which supports right from mainframe
systems to personal computers and even to hand held devices.

o Today most of company’s software products lie on SQL for its
data management and SQL is the nucleus of database products
from Microsoft and Oracle, two of the largest software
companies in the world.

o The journey of SQL is a tremendous right from the beginning as
an IBM research project; SQL has become a powerful market
force.

o SQL is a vehicle for structuring, organizing, managing and
retrieving data stored in the database.

o The name “SQL” is an abbreviation for Structured Query
Language.

o It acts as an interpreter which allows the user to interact directly
with database through computer language.

o The figure below shows how actually SQL works with databases

5

o In the above system, the computer system has a database
which stores all the needed information.

o If the above database is for a company, it might store the
information of manufacturing, finance, human resource,
inventory, payroll etc.

o On the personal computer, the client must have created a
database to store information such a list of people, their names,
contact details etc. or data extracted from the larger computer
system.

o When there is a need to retrieve the data stored in database, we
take the help of SQL which allows the user to design queries
based on user’s choice which will retrieve the needed
information from the database.

o The SQL then makes a request which is then processed by
DBMS, retrieves the requested data and it returns the data back
to the user.

o This process of requesting data from a database and receiving
back the results is called a database query—hence the name
Structured Query Language.

o There are various roles which are played by SQL. Some of them
are discussed below

1. SQL is an interactive query language
SQL provides a very user friendly, easy to use tool which
allows the user to write the typical SQL commands in
order to retrieve the data from the database.

2. SQL is a database programming language.
Through the use of database utility programs,
programmers write SQL commands in their own
applications to retrieve the data stored in database.

6

3. SQL is a database administration language.
It allows the database administrators to define database
structures and can also control the access to the stored
data.

4. SQL is a client/server language.
In the client server architecture, the client programs uses
SQL to communicate through a network to access the
shared data stored in database.

5. SQL is an Internet data access language.
Since SQL is a standard language, many Internet web
servers makes use of SQL to interact with company data
and Internet application servers for accessing company-
wide databases.

6. SQL is a distributed database language.
Many DDBMS (Distributed Database Management
System) uses SQL to distribute the data across many
connected computer systems. The DBMS software
running on the local systems makes use of SQL to
communicate with other systems by sending request for
data access.

7. SQL is a database gateway language.
SQL is most of the time used as a gateway which allows
one brad of DBMS to communicate with the other brands.

2.4 WORKING WITH RELATIONS OF RDBMS

o This section highlights how to create, modify or delete relations
which may exist in relational model. This can understood by the
following SQL statements

1. Creating Relations(Create Table statement)
2. Modifying Relations (Alter table statement)
3. Integrity constraints over the relation

1. Creating a Relation (create table statement)
o The CREATE TABLE statement defines a new table (Relation)

in the database and prepares it to accept data.
o For example, if we want to create a new table IDOLTYIT, the

table is created as follows
Create table IDOLTYIT (S_ID integer not null, S_name
varchar(25) not null, contactno integer not null, email
varchar(30) not null).

7

o When the user is creating the above table, the user now
become the owner of the newly created table, which is given the
name specified in the above statement.

o Note that the table name must be a legal SQL name, and it
must not conflict with any of the existing tables.

o A slightly complex create table is discussed below which allows
to create a new table and also to set up the relationship
between different tables

Create table NEWORDERS (ONUM INTEGER NOT
NULL,

ODATE DATE NOT NULL,
CUST INTEGER NOT NULL,
REP INTEGER,
MFR CHAR (3) NOT NULL,
PRODUCT CHAR (5) NOT NULL,
QTY INTEGER NOT NULL,
AMT MONEY NOT NULL,
PRIMARY KEY (ONUM),
CONSTRAINT PLACEDBY
FOREIGN KEY (CUST)
REFERENCES
NEWCUSTOMERS
ON DELETE CASCADE,
CONSTRAINT TAKENBY
FOREIGN KEY (REP)
REFERENCES NEWSALESREPS
ON DELETE SET NULL,
CONSTRAINT ISFOR
FOREIGN KEY (MFR, PRODUCT)
REFERENCES NEWPRODUCTS
ON DELETE RESTRICT)

o In the above example, onum denotes the order number for
every order taken by customer. Since it is having only unique
values and no duplicates are allowed here, we can make this as
primary key.

o In the above example, the column name CUST has made a
foreign key which is currently referencing NEWCUSTOMERS
table. REP column is made a foreign key referencing
NEWSALESREPS table and MFR, PRODUCT is made the
composite foreign key referencing the NEWPRODUCTS table.

o By setting the primary- foreign key relationship (Parent- Child
Relationship), it allows the data to flow easily between the set of
tables define in the Create table statement.

8

2. Modifying a relation (Alter table statement)
o After the table is ready, at times user feels the need to store

additional information about the entries in the table.
o The alter table allows the user to change or modify the relation

(schema) of the table which is already created by a Create table
syntax.

o The alter table statement allows the user to do the following:
1. Add a column definition to the table.
2. Drop a column from the table.
3. Change the default value to the table.
4. Add or drop primary key for the table.
5. Add or drop the foreign key for a table.
6. Add or drop the uniqueness constraint for a table.
7. Add or drop check constraint for a table.

o Some of the examples are discussed below
1. Alter Table IDOLSYIT

Add Subject char (15)

9

o In the above example, an existing table of IDOLSYIT is modified
with a new column is added as subject which was not there
earlier.

2. Alter Table IDOLTYIT
Drop Email

o In the above example, an existing table of IDOLTYIT is modified
with a existing column is removed known as email which was
earlier present in the table.

3. Alter Table NEWOFFICES
Add Constraint Myoffices
Foreign key (NRegion)
References Regions

o In the above example, the NRegion column in the
NEWOFFICES table is made a foreign key for the newly created
Regions Table.

4. Alter Table NEWSALESREPS
DROP Constraint NWORKSIN
Foreign Key (NewRepOffice)
References NEWOFFICES

Alter Table NEWOFFICES
Drop Primary Key (Office)

3. In the above example, the primary key of the NEWOFFICES
table has been changed. Before changing it, first we need to
drop the reference to foreign key and primary key and then we
need to select a new column from the table and should be made
as a primary key.

3. Integrity constraints over the Relation
o The term data integrity refers to the correctness and

completeness of the data in a database. When the contents
of a database are modified with the INSERT,
DELETE, or UPDATE statements, the integrity of the stored
data can be lost in many different ways.

o One of the goals of RDBMS is to preserve the integrity of
stored data to larger extent.

o To preserve the consistency and correctness of its stored
data, a relational DBMS typically imposes one or more data
integrity constraints.

o These constraints restrict the data values that can be
inserted into the database or created by a database update.

10

o Several different types of data integrity constraints are
commonly found in relational databases, includes the
following

1. Required data checking
o There are instances when some columns in a database

must contain a valid data value in every row; they are not
allowed to contain missing or NULL values.

o In the sample database, every order must have an
associated customer who placed the order. The DBMS
can be asked to prevent NULL values in this column.

2. Validity checking
o Every column in a database has a domain, a set of data

values that are legal for that column. The DBMS can be
asked to prevent other data values in these columns.

3. Entity integrity
o The primary key of a table must contain a unique value

in each row, which is different from the values in all other
rows.

o Duplicate values are illegal, because they wouldn't allow
the database to distinguish one entity from another. The
DBMS can be forced to enforce this unique values
constraint.

4. Referential integrity
o A foreign key in a relational database links each row in

the child table containing the foreign key to the row of
the parent table containing the matching primary key
value.

o The DBMS can be asked to enforce this foreign
key/primary key constraint.

5. Other data relationships
o The real-world situation modelled by a database will

often have additional constraints that govern the legal
data values that may appear in the database.

o The DBMS can be asked to check modifications to the
tables to make sure that their values are constrained in
this way.

11

6. Business rules
o Updates to a database may be constrained by business

rules governing the real-world transactions that are
represented by the updates.

o For example, there might be a business rule such as the
new employee should be added only if the age of the
employee is between 18 to 35 years.

2.5 ADVANTAGES AND DISADVANTAGES OF
RDBMS

ADVANTAGES

1. Simple data Structures
o By storing the data in table format, it becomes easier for the

users to understand the structure of database and use it.
o RDBMS provides data access using a natural structure and

organization of the data.
o When the users are writing a queries, database queries cam

search any columns for any matching entries.

2. Multi-user database access monitoring
o RDBMS allows the multiple database users to access a

database simultaneously.
o By taking advantage of services of transaction management

and locking, it allows the user to access the data without
being changed, prevents collisions between two users
updating the same data, and keeps users from accessing
partially updated records.

3. Well defined privileges
o Authorization and privilege control features in an RDBMS

allow the database administrator to restrict access to
authorized users, and grant privileges to individual users
based on the types of database tasks they need to perform.

o Authorization can be defined based on the remote client IP
address in combination with user authorization, restricting
access to specific external computer systems.

12

4. Network Access
o RDBMSs provide access to the database through a server

daemon, a specialized software program that listens for
requests on a network, and allows database clients to
connect to and use the database.

o Users do not need to be able to log in to the physical
computer system to use the database, providing
convenience for the users and a layer of security for the
database. Network access allows developers to build
desktop tools and Web applications to interact with
databases.

5. Speed
o The relational database model is not the fastest data

structure. RDBMS advantages, such as simplicity, make the
slower speed a fair trade-off.

o Optimizations built into an RDBMS, and the design of the
databases, enhance performance, allowing RDBMSs to
perform more than fast enough for most applications and
data sets.

o Improvements in technology, increasing processor speeds
and decreasing memory and storage costs allow systems
administrators to build incredibly fast systems that can
overcome any database performance shortcomings.

6. Maintenance
o RDBMS feature maintenance utilities that provide database

administrators with tools to easily maintain, test, repair and
back up the databases housed in the system.

o Many of the functions can be automated using built-in
automation in the RDBMS, or automation tools available on
the operating system.

7. Language
o RDBMSs support a generic language called "Structured

Query Language" (SQL).
o The SQL syntax is simple, and the language uses standard

English language keywords and phrasing, making it fairly
intuitive and easy to learn.

13

2.6 SUMMARY

o A relational DBMS is special system software that is used to
manage the organization, storage, access, security and integrity
of data.

o A relational DBMS stores information in a set of "tables", each
of which has a unique identifier or "primary key".

o RDBMS is the organization of data stored in rows and columns.
o Tuples are the rows of the records in the given table.
o Attributes are the column headers of the table.
o The data type describing the types of values that can appear in

each column is called a domain.
o In every relational database, every table has a particular column

or set of columns whose value uniquely identify each row in the
table. Such a column is called the primary key of the table.

o A column in one table whose value matches with the primary
key of another table is called as a foreign key of the table.

o SQL is a vehicle for structuring, organizing, managing and
retrieving data stored in the database.

o SQL plays various roles. Some of them are listed below
1. SQL is an interactive query language
2. SQL is a database programming language.
3. SQL is a database administration language.
4. SQL is an Internet data access language.
5. SQL is a client/server language.
6. SQL is a distributed database language.
7. SQL is a database gateway language.

o The CREATE TABLE statement defines a new table (Relation)
in the database and prepares it to accept data.

o The ALTER table allows the user to change or modify the
relation (schema) of the table which is already created by a
Create table syntax.

o The term data integrity refers to the correctness and
completeness of the data in a database. When the
contents of a database are modified with the INSERT, DELETE,
or UPDATE statements, the integrity of the stored data can be
lost in many different ways.

o Various Integrity checking discussed such as
1. Required data checking
2. Validity checking

14

3. Entity integrity
4. Referential integrity
5. Other data relationships
6. Business rules

2.7. MODEL QUESTIONS

1. What is RDBMS? Explain the need for RDBMS.
2. Explain the relational model with suitable example.
3. Define the following terms

a. Tuple
b. Attribute
c. Domain
d. Primary Key
e. Foreign Key

4. Write in detail about SQL.
5. Explain the various role of SQL
6. Explain how to create and modify the relations of RDBMS
7. Explain the various advantages of SQL.

1

3

INTRODUCTION TO DATABASE
STRUCTURE

Unit Structure

3.0 Objectives
3.1 Levels of abstraction in DBMS
3.2 View of data
3.3 Role of Database users
3.4 Role of database administrators
3.5 Transaction Management
3.6 Database Structure
3.7 Summary
3.8 Model Questions

3.0 OBJECTIVES

Introduction
o In traditional system, each collection of application programs

had its own independent master file. The duplication of data
over master files could lead to inconsistent data.

o In early days, efforts were discovered to use a common master
file for a number of application programs resulted in problems of
integrity and security.

2

o The production of new application programs could require
amendments to existing application programs, resulting in
`unproductive maintenance'.

o Data structuring techniques, developed to exploit random
access storage devices, increased the complexity of the insert,
delete and update operations on data.

o As a first step towards a DBMS, packages of subroutines were
introduced to reduce programmer effort in maintaining these
data structures.

o However, the use of these packages still requires knowledge of
the physical organization of the data.

o A database system is a computer-based system to record and
maintain information. The information concerned can be
anything of significance to the organisation for whose use it is
intended.

o The database can hold a variety of different things. The
database concepts are divided into two concepts:

1. Schema
2. Data

o The schema is the structure of the database and the data is the
facts of the database.

o Consider our Salesperson database where we are storing the
facts of the salespeople working in an organization.

o Such facts could include salesperson name, address, date of
birth, and salary. In a database all the information on all
salespeople would be held in a single storage "container", called
a table.

o This table is a tabular object like a spreadsheet page, with
different salespeople as the rows, and the facts (e.g. their
names) as columns. Let us call this table Salesperson, and it
could look something like:
Salesperson

Name Address Date of Birth Salary

Rakesh M.G. Road 12/12/1960 11000

Dinesh CST Road 15/11/1978 25000

Sudhir JN Road 14/02/1985 15000

o From the above example, the schema would define that
Salesperson table has four components, “Name”, “Address”,
“Date of Birth”, and “Salary”.

3

o At times as a database administrator, you want to protect user
from accidently entering wrong data. For example, you don’t
want the user to enter the name in date of birth field in
database.

o Protecting the database against rubbish data is one of the most
important database design steps, and is what much of this
course is about. From what we know about the facts, we can
say things like:

1. NAME is a string, and needs to hold at least 12 characters.
2. ADDRESS is a string, and needs to hold at least 12

characters.
3. DOB is a date... The company forbids people over 100 years

old or younger than 18 years old working for them.
4. SALARY is a number. It must be greater than zero.

3.1 LEVELS OF ABSTRACTION IN DBMS

o Database management can be defined in the way in which they
use their data dictionary.

o The data dictionary contains logical descriptions of the data and
its relationships, physical information about data storage, and
usually information on users on users and privileges.

o Data dictionaries are helpful for all human users, especially the
database administrator, as well as invaluable to the application
programs and report generators that might access the
database.

4

o The three levels of database architecture are

1. External Level: It is concerned with the way individual
user observes the data.

2. Conceptual Level: It can be regarded as a community
user view a formal description of data of interest to the
organisation, independent of any storage considerations.

3. Internal Level: It is concerned with the way in which the
data is actually used.

o Let us discuss this three levels in more detail

1. External Level

o A user is anyone who needs to access some portion of the data
from the database.

o They may range from application programmers to casual users
with complex adhoc queries.

o Each user may use the language according to its own choice.
o The application programmer may use a high level language

(e.g. COBOL) while the casual user will probably use a query
language.

o Regardless of the language used, it will include a data sub-
language (DSL) which is that subset of the language which is
concerned with storage and retrieval of information in the
database and may or may not be apparent to the user.

o A DSL is a combination of two languages:

1. A data definition language (DDL) which provides for the
definition or description of database objects

2. A data manipulation language (DML) which supports the
manipulation or processing of database objects.

o Each user sees the data in terms of an external view which is
defined by an external schema, consisting basically of
descriptions of each of the various types of external record in
that external view, and also a definition of the mapping between
the external schema and the underlying conceptual schema.

2. Conceptual Level

o It defines the logical definition of the database.

o It is also known as the community view.

5

o It is abstract representation of the entire information content of
the database.

o It is in general a view of the data as it actually is, that is, it is a
`model' of the `real world'.

o It consists of multiple occurrences of multiple types of
conceptual record, defined in the conceptual schema.

o In order to achieve data independence, the definitions of
conceptual records is defined in the conceptual schema.

3. Internal Level

o It is concern with the way the data are physically stored on the
hardware.

o Usually the internal level is described using the actual bytes and
machine-level terminology which is taken care by the DBMS
software.

o The internal view is a low-level representation of the entire
database consisting of multiple occurrences of multiple types of
internal (stored) records.

6

o The above figure represents the different levels of data
representation.

o The internal level would describe exactly which bytes contain
the information and how it can be accessed.

o If user1 is the payroll clerk, the external view contains the
information of salesperson.

o If the application programmer1 is designing billing program, he
would need all order information as well as information on the
particular sales representative in the external view.

o Consider a possible schema for a student database. The office
administrator wants immediate access to student information.

o The records clerk needs to be sure all student fees structure is
calculated and stored in database.

Data Independence

o The main advantage of using the data independence is that
both the user program and the database can be altered
independently of each other.

o Data independence is therefore defined as the capacity to
change one level of schema without changing the schema at the
next highest level.

o In a conventional system, applications are data dependent
which means that the way in which the data is organised in
secondary storage and the way in which it is accessed are both
dictated by the requirements of the application, and, moreover,
that knowledge of the data organisation and access technique is
built into the application logic.

o Data independence can be classified into two types

1. Logical data independence

o It is the ability to modify the conceptual schema without
affecting the existing external schemas.

o In logical data independence, the users are shielded from
changes in the logical structure of the data or changes in the
choice of relations to be stored.

7

o The changes to the conceptual schema, such as the addition
and deletion of entities, addition and deletion of attributes, or
addition and deletion of relationships must be possible
without changing existing external schemas or having to
rewrite application programs.

o Only the view definition and the mapping need be changed
in a DBMS that supports logical data independence.

2. Physical data independence

o The ability to modify the internal schema without having to
change the conceptual or external schemas is called
physical data independence.

o In physical data independence, the conceptual schema
insulates the users from changes in the physical storage of
the data.

o The changes to the internal schema, such as using different
file organizations or storage structures, using different
storage devices, modifying indexes or hashing algorithms
must be possible without changing the conceptual or
external schemas.

o In other words, physical data independence indicates that
the physical storage structures or devices used for storing
the data could be changed without necessitating a change in
the conceptual view or any of the external views.

o Note: The Logical data independence is difficult to achieve
than physical data independence as it requires the flexibility
in the design of database and programmer has to anticipate
the future requirements or modifications in the design of the
database.

3.3 ROLE OF DATABASE USERS

o The database users are classified into four categories.

1. Naive user:

o They are unsophisticated users who interact with the system
by invoking one of the permanent application programs that
have been written previously.

8

o Example: Suppose the bank teller wants to transfer the
money after maturity of the fixed deposit amount of a
particular customer, needs to invoke a program called
transfer.

o This program ask the teller for the amount of money to be
transferred, the account to which the money is to be
transferred.

2. Application programmers

o They are the computer professionals who interact with the
system through DML calls, which are embedded in a
program written in a host programming language.

o Since the DML syntax is different from the host language
syntax, DMl calls are usually prefaced by a special character
so that the appropriate code can be generated.

o A special pre-processor, called the DML precompiler,
converts the DML statements to normal procedure calls in
the host language.

o There are special types of programming languages that
combine control structures of Pascal like languages with
control structures for the manipulation of a database object.

3. Sophisticated users

o These users interact with the database using database
query language.

o They submit their query to the query processor.

o Then Data Manipulation Language (DML) functions are
performed on the database to retrieve the data.

o Tools used by these users are OLAP(Online Analytical
Processing) and data mining tools.

4. Specialized users

o These users write specialized database applications to
retrieve data.

o These applications can be used to retrieve data with
complex data types e.g. graphics data and audio data.

9

3.4 ROLE OF DATABASE ADMINISTRATOR

A person having who has central control over data and
programs that access the data is called DBA. Following are the
functions of the DBA.

o Schema definition: DBA creates database schema by
executing Data Definition Language (DDL) statements.

o Storage structure and access method definition

o Schema and physical organization modification: If any
changes are to be made in the original schema, to fit the
need of your organization, then these changes are carried
out by the DBA.

o Granting of authorization for data access: DBA can decide
which parts of data can be accessed by which users. Before
any user access the data, DBMS checks which rights are
granted to the user by the DBA.

o Routine maintenance: DBA has to take periodic backups of
the database, ensure that enough disk space is available to
store new data, ensure that performance of DBMS ix not
degraded by any operation carried out by the users.

o Performance monitoring: Here DBMS should respond to
changes in requirements, i.e. changing details of storage
and access thereby organising the system so as to get the
performance that is `best for the enterprise'.

3.5 TRANSACTION MANAGEMENT

What is a Transaction?

o A transaction is an event which occurs on the database.
Generally a transaction reads a value from the database or
writes a value to the database.

o Although a transaction can both read and write on the
database, there are some fundamental differences between
these two classes of operations.

o A read operation does not change the image of the database
in any way.

o But a write operation, whether performed with the intention
of inserting, updating or deleting data from the database,

10

changes the image of the database. ie, we may say that
these transactions bring the database from an image which
existed before the transaction occurred (called theBefore
Image or BFIM) to an image which exists after the
transaction occurred (called the After Image or AFIM).

The Four Properties of Transactions
o Every transaction, for whatever purpose it is being used, has

the following four properties. Taking the initial letters of these
four properties we collectively call them the ACID
Properties.

1. Atomicity: This means that either all of the instructions within
the transaction will be reflected in the database, or none of them
will be reflected.
o Say for example, we have two accounts A and B, each

containing Rs 1000/-.
o We now start a transaction to deposit Rs 1000/- from

account A to Account B.

Read A;
A = A – 100;
Write A;
Read B;
B = B + 100;
Write B;

The transaction has 6 instructions to extract the amount from
A and submit it to B. The AFIM will show Rs 90000/- in A and Rs
1100/- in B.

o Now, suppose there is a power failure just after instruction 3
(Write A) has been complete. What happens now? After the
system recovers the AFIM will show Rs 900/- in A, but the
same Rs 1000/- in B. It would be said that Rs 100/-
evaporated in thin air for the power failure. Clearly such a
situation is not acceptable.

o The solution is to keep every value calculated by the
instruction of the transaction not in any stable storage (hard
disc) but in a volatile storage (RAM), until the transaction
completes its last instruction.

o When we see that there has not been any error we do
something known as a COMMIT operation. Its job is to write
every temporarily calculated value from the volatile storage
on to the stable storage.

11

o In this way, even if power fails at instruction 3, the post
recovery image of the database will show accounts A and B
both containing Rs 1000/-, as if the failed transaction had
never occurred.

2. Consistency: If we execute a particular transaction in isolation
or together with other transaction, (i.e. presumably in a multi-
programming environment), the transaction will yield the same
expected result.
o To give better performance, every database management

system supports the execution of multiple transactions at the
same time, using CPU Time Sharing.

o Concurrently executing transactions may have to deal with
the problem of sharable resources, i.e. resources that
multiple transactions are trying to read/write at the same
time.

o For example, we may have a table or a record on which two
transaction are trying to read or write at the same time.
Careful mechanisms are created in order to prevent
mismanagement of these sharable resources, so that there
should not be any change in the way a transaction performs.

o A transaction which deposits Rs 100/- to account A must
deposit the same amount whether it is acting alone or in
conjunction with another transaction that may be trying to
deposit or withdraw some amount at the same time.

3. Isolation: In case multiple transactions are executing
concurrently and trying to access a sharable resource at the
same time, the system should create an ordering in their
execution so that they should not create any anomaly in the
value stored at the sharable resource.

There are several ways to achieve this and the most popular
one is using some kind of locking mechanism.
o Again, if you have the concept of Operating Systems, then

you should remember the semaphores, how it is used by a
process to make a resource busy before starting to use it,
and how it is used to release the resource after the usage is
over.

o Other processes intending to access that same resource
must wait during this time. Locking is almost similar. It states
that a transaction must first lock the data item that it wishes
to access, and release the lock when the accessing is no
longer required.

12

o Once a transaction locks the data item, other transactions
wishing to access the same data item must wait until the lock
is released.

4. Durability: It states that once a transaction has been complete
the changes it has made should be permanent.
o As we have seen in the explanation of the Atomicity

property, the transaction, if completes successfully, is
committed. Once the COMMIT is done, the changes which
the transaction has made to the database are immediately
written into permanent storage.

o So, after the transaction has been committed successfully,
there is no question of any loss of information even if the
power fails. Committing a transaction guarantees that the
AFIM has been reached.

o There are several ways Atomicity and Durability can be
implemented. One of them is called Shadow Copy.

o In this scheme a database pointer is used to point to the
BFIM of the database. During the transaction, all the
temporary changes are recorded into a Shadow Copy, which
is an exact copy of the original database plus the changes
made by the transaction, which is the AFIM.

o Now, if the transaction is required to COMMIT, then the
database pointer is updated to point to the AFIM copy, and
the BFIM copy is discarded.

o On the other hand, if the transaction is not committed, then
the database pointer is not updated. It keeps pointing to the
BFIM, and the AFIM is discarded. This is a simple scheme,
but takes a lot of memory space and time to implement.

3.6 DATABASE STRUCTURE

o In a database structure, the DBMS acts as an interface
between the user and the database.
o
o The user requests the DBMS to perform various operations
such as insert, delete, update and retrieval on the database.
o
o The components of DBMS perform these requested
operations on the database and provide necessary data to the
users.

13

o The various components of DBMS are shown below: -
o

Fig. 3.3 Structure Of DBMS

1. DDL Compiler
Data Description Language compiler processes schema
definitions specified in the DDL. It includes metadata information
such as the name of the files, data items, storage details of
each file, mapping information and constraints etc.

2. DML Compiler and Query optimizer
The DML commands such as insert, update, delete, retrieve
from the application program are sent to the DML compiler for
compilation into object code for database access. The object
code is then optimized in the best way to execute a query by the
query optimizer and then send to the data manager.

3. Data Manager
The Data Manager is the central software component of the

DBMS also knows as Database Control System.

The Main Functions Of Data Manager are
• It convert operations in user's Queries coming from the
application programs or combination of DML Compiler and
Query optimizer which is known as Query Processor from
user's logical view to physical file system.
• It controls DBMS information access that is stored on disk.
• It also controls handling buffers in main memory.

14

• It also enforces constraints to maintain consistency and
integrity of the data.
• It also synchronizes the simultaneous operations performed
by the concurrent users.
• It also controls the backup and recovery operations.

4. Data Dictionary
Data Dictionary is a repository of description of data in the
database. It contains information about
• Data - names of the tables, names of attributes of each table,
length of attributes, and number of rows in each table.
• Relationships between database transactions and data items
referenced by them which are useful in determining which
transactions are affected when certain data definitions are
changed.
• Constraints on data i.e. range of values permitted.
• Detailed information on physical database design such as
storage structure, access paths, files and record sizes.
• Access Authorization which is the description of database
users their responsibilities and their access rights.
• Usage statistics such as frequency of query and transactions.

Data dictionary is used to actually control the data integrity,
database operation and accuracy. It may be used as an
important part of the DBMS.

Importance of Data Dictionary
Data Dictionary is necessary in the databases due to following
reasons:
• It improves the control of DBA over the information system
and user's understanding of use of the system.
• It helps in documentations of the database design process by
storing documentation of the result of every design phase and
design decisions.
• It helps in searching the views on the database definitions of
those views.
• It provides great assistance in producing a report of which
data elements (i.e. data values) are used in all the programs.
• It promotes data independence i.e. by addition or
modifications of structures in the database application program
are not affected.

15

5. Data Files - It contains the data portion of the database.

6. Compiled DML - The DML complier converts the high level
Queries into low level file access commands known as compiled
DML.

7. End Users – They are the users of the system who is going to
use the system for their day to day activities.

3.7 SUMMARY

o A database system is a computer-based system to record and
maintain information.

o The data dictionary contains logical descriptions of the data and
its relationships, physical information about data storage, and
usually information on users on users and privileges.

o The three levels of database architecture are

1. External Level: It is concerned with the way individual user
observes the data.

2. Conceptual Level: It can be regarded as a community user
view a formal description of data of interest to the
organisation, independent of any storage considerations.

3. Internal Level: It is concerned with the way in which the data
is actually used.

o Data independence is defined as the capacity to change one
level of schema without changing the schema at the next
highest level.

o Data independence is categorized into two types
1. Logical data independence- It is the ability to modify the

conceptual schema without affecting the existing external
schemas.

2. Physical data independence- It is ability to modify the
internal schema without having to change the conceptual or
external schemas.

o The different types of database users are naïve
users,application programmers,sophisticated users,specialized
users.

o A person having who has central control over data and
programs that access the data is called Database Administrator
who plays the various roles.

o A transaction is an event which occurs on the database.

16

o The four properties of transactions are generally denoted by
ACID.

3.8 MODEL QUESTIONS

1. Explain the structure of database with neat label diagram

2. What is data independence? Why it is needed in database?

3. Explain the different categories of Data independence.

4. What is data abstraction? Explain the different levels of data

abstraction.

5. Explain the different types of database users.

6. Explain the different role performed by database

administrator.

7. Write a short note on transaction management.

1

4

INTRODUCTION TO DATA MODELS
Unit Structure

4.0 Objectives
4.1 Introduction
4.2 Evolution of Data models
4.3 Types of Data Models
4.4 Merits and Demerits of Each Model
4.5 Business Rules
4.6 Summary
4.7 Review Questions

5.0 OBJECTIVES

4.1 INTRODUCTION

o A data model is a picture or description which shows how the
data is to be arranged to achieve a given task.

o It is a clear model which specifies how the data items are
arranged in a given model.

o Some data models which gives a clear picture which shows the
manner in which the data records are connected or related
within a file structure. These are called structural data models.

o DBMS organize and structure data so that it can be retrieved
and manipulated by different users and application programs.

2

o The data structures and access techniques provided by a
particular DBMS are called its data model.

o A data model determined both the personality of a DBMS and
the applications for which it is particularly well suited.

4.2 EVOLUTION OF DATA MODELS
o The first non-proprietary programming language was COBOL

and with COBOL, and later FORTRAN, programming became
the foundation of creating enterprise computer systems.

o The systems developed, needed to store its data somewhere
and the programmers designed more or less proprietary and
specialized solutions for this purpose.

o In 1964 the first commercial database management system
(DBMS) was born; IDS - Integrated Data Store, developed at
General Electric, based upon an early network data model
developed by C.W Bachman (Bachman 1965).

o In the late 1960s, IBM and North American Aviation (later
Rockwell International) developed IMS - Information
Management System, and its DL/1-language. This was the first
commercial hierarchical DBMS. Both kinds of DBMSs
(hierarchical and network) were accessible from the
programming language (usually COBOL) using a low-level
interface. This made the task of creating an application,
maintaining the database as well as tuning and development
controllable, but still complex and time-consuming.

o In 1970 Edgar F. Codd published an article which offered a
fundamentally different approach (Codd 1970).

o Codd suggested that all data in a database could be
represented as a tabular structure (tables with columns and
rows, which he called relations) and that these relations could
be accessed using a high-level non-procedural (or declarative)
language.

o Instead of writing algorithms to access data, this approach only
needed a predicate that identified the desired records or
combination of records. This would lead to higher programmer
productivity and in the beginning of the 1980s several Relational
DBMS (RDBMS) products emerged (e.g. Oracle, Informix,
Ingres and DB2).

3

o As the DBMSs evolved, so did the programming languages. In
1967 Simula, the first object-oriented programming language
was born. Simula was developed to make a foundation to
develop simulation programs, and contained the now familiar
class-concept. Several other programming languages adopted
the class-concept from Simula (e.g. C++, Java, Eifel, and
Smalltalk) and continued to evolve more or less independently
of the DBMSs.

o In the early 1980s research started on another kind of database.
This research was among other things, motivated by the need of
a database system capable of handling complex objects and
structures like those used in CAD systems, CASE and OIS
systems (Zdonik. 1994). To accomplish these tasks the
database had to be able to store classes and objects and the
objects associations and methods, and the object-oriented
DBMS (OODBMS) emerged. In the late 1980s several vendors
had developed OODBMSs (e.g. ObjectDesign, Versant, O2 and
Objectivity).

o OODBMSs were no threat in the late 1980s to the now big
commercial vendors developing and selling hierarchical,
network or relational databases. In 1991 ODMG (Object
Database Management Group) was founded, mainly thanks to
Rick Cattell of JavaSoft, and in 1993 several vendors of
OODBMSs agreed upon an OODBMS standard called ODMG-
93.

o The relational databases already had its standard - SQL-92,
defined by its ANSI committee and ISO. And so did the network
database vendors as well; CODASYL (defined in 1986 by the
ANSI X3H2 comittee).

o The founding of ODMG and the fact that object-oriented
programming languages became more and more used may well
have been the major driving forces when the ANSI X3H2
committee started its work on SQL3 in 1992. This proposal put
another type of DBMS on the arena - the object relational DBMS
(ORDBMS).

o While all this was happening, more and more programmers
converted from C and other languages to C++. C++ was
becoming the most used object-oriented language, but C++
application was not always that easy to develop and maintain.
Such applications often had memory-leaks, erroneous pointers
and other trivial problems attached to them.

4

o In 1991 Sun's Green Team started the development of a new
programming language which was loosely based on C++. The
language was named Oak after the trees outside the office
window of the language designer - James Gosling.

o In 1992 Sun turned Green Team into a fully owned company,
called First Person Inc. National Center for Supercomputing
introduced Mosaic in 1993, a WWW browser, and the Internet
began to bustle with traffic. Soon other WWW browser followed.

o In 1994 First Person built an Oak-ready browser called
WebRunner and Sun backed the decision to give the language
(Oak) away for free, but first Oak was renamed to Java and
WebRunner to HotJava. Java became available to millions of
people due to Netscapes bundling of Java, and soon others
followed (Bank 1995).

4.3 TYPES OF DATA MODEL

There are four different types of data models

4.3.1 Hierarchical databases

4.3.2 Network databases

4.3.3 Relational databases

4.3.4 Object oriented databases

4.3.1 Hierarchical databases

5

o Hierarchical Databases is most commonly used with
mainframe systems.

o It is one of the oldest methods of organizing and storing data
and it is still used by some organizations for making travel
reservations.

o A hierarchical database is organized in pyramid fashion, like the
branches of a tree extending downwards.

o In this model, related fields or records are grouped together so
that there are higher-level records and lower-level records, just
like the parents in a family tree sit above the subordinated
children.

o Based on this analogy, the parent record at the top of the
pyramid is called the root record.

o A child record always has only one parent record to which it is
linked, just like in a normal family tree.

o In contrast, a parent record may have more than one child
record linked to it. Hierarchical databases work by moving from
the top down.

o A record search is conducted by starting at the top of the
pyramid and working down through the tree from parent to child
until the appropriate child record is found. Furthermore, each
child can also be a parent with children underneath it.

4.3.2Network databases

o Network databases are similar to hierarchical databases by
also having a hierarchical structure. There are a few key
differences, however.

6

o Instead of looking like an upside-down tree, a network database
looks more like a cobweb or interconnected network of records.
In network databases, children are called members and parents
are called owners.

The most important difference is that each child or member
can have more than one parent (or owner).

o Similar to hierarchical databases, network databases are
principally used on mainframe computers.

o Since more connections can be made between different types of
data, network databases are considered more flexible.
However, two limitations must be considered when using this
kind of database.

o Similar to hierarchical databases, network databases must be
defined in advance. There is also a limit to the number of
connections that can be made between records.

4.3.3Relational databases

o Pre-relational models depended upon being able to determine
explicitly where and how individual records were stored.

o Early relational proponents argued that the relational data model
viewed information logically rather than physically, but this is not
quite correct.

o Earlier data models associated the logical and physical aspects
of information together; logically-related information was stored
in physical proximity within a data file. The relational data model
first separated the logical from the physical aspects.

o The relational data model looks at information as
an unordered collection of "relations."

o Each relation is populated with unordered "tuples" of the
same unordered "field" structure.

o Fields may only contain values of a well-defined ("atomic")
domain or the null value. The unordered aspect needs to be
emphasized. For expository purposes, relations are often
viewed as "tables".

o The tuples constitute the "rows" of the table; values for a
specific field constitute "columns". However, the "table data
model" tends to impose a very non-relational ordering on both

7

tuples and fields. Relations are an abstraction of how data is
stored; tables are just one of many possible implementations.

o Some of the relational terms are crafted to emphasize the
distinction between logical and physical features, to avoid
confusing one concept with another. However, vocabulary
leakage from other disciplines has sprinkled into the
conversation of relational proponents.

o There is a strong tendency to refer to an individual tuple/row as
a "record" because collections of fields in other models are
called records. "Attribute" is often used synonymously with field.

o To be sure, "unordered" implies neither "chaotic" nor "random".
Relations and Fields are named uniquely and identified easily.
Distinguishing between tuples is more subtle since the order is
not pre-defined.

o Rather than depending upon relative (as in hierarchy) or
absolute (as in network) locations, tuples may only be
differentiated according to their contents.

o Consequently, duplicate tuples are not permitted within a single
relation. Even more strongly, distinct tuples must have a unique
"key" (some combination of a relation's named fields).

o The set of minimal keys includes one "primary key"; the rest are
"candidate keys". Within a tuple, references to other tuples are
expressed as a "foreign key," which should contain the values of
the referenced tuple's primary key.

o Relational theory provides a firm mathematical foundation for
data management. Set theory could be applied to relations
using relational algebraic operations (union, intersection, join,
projection, etc.).

o Assertions about the existence or non-existence of some
condition with a data base could be proven with a rigor
unachievable with earlier models.

4.3.4 Object oriented databases

o A data model is a logic organization of the real world objects
(entities), constraints on them, and the relationships among
objects. A DB language is a concrete syntax for a data model.
A DB system implements a data model.

8

o A core object-oriented data model consists of the following basic
object-oriented concepts:

(1) object and object identifier: Any real world entity is uniformly
modeled as an object (associated with a unique id: used to
pinpoint an object to retrieve).

(2) attributes and methods: Here every object has a state (the set
of values for the attributes of the object) and a behavior (the
set of methods - program code - which operate on the state
of the object). The state and behavior encapsulated in an
object are accessed or invoked from outside the object only
through explicit message passing.

An attribute is an instance variable, whose domain may be
any class: user-defined or primitive. A class composition
hierarchy (aggregation relationship) is orthogonal to the
concept of a class hierarchy. The link in a class composition
hierarchy may form cycles.

(3) class: a means of grouping all the objects which share the
same set of attributes and methods. An object must belong
to only one class as an instance of that class (instance-of
relationship). A class is similar to an abstract data type. A
class may also be primitive (no attributes), e.g., integer,
string, Boolean.

(4) Class hierarchy and inheritance: derive a new class
(subclass) from an existing class (superclass). The subclass
inherits all the attributes and methods of the existing class
and may have additional attributes and methods. single
inheritance (class hierarchy) vs. multiple inheritance (class
lattice).

4.4 ADVANTAGES AND DISADVANTAGES OF DATA
MODELS

Advantages
1. Simplicity: Since the database is based on the hierarchical
structure, the relationship between the various layers is logically
simple.

2. Data Security: Hierarchical model was the first database model
that offered the data security that is provided by the DBMS.

3. Data Integrity: Since it is based on the parent child relationship,
there is always a link between the parent segment and the child
segment under it.

9

4. Efficiency: It is very efficient because when the database
contains a large number of 1:N relationship and when the user
require large number of transaction.

Disadvantages

1. Implementation complexity: Although it is simple and easy to
design, it is quite complex to implement.

2. Database Management Problem: If you make any changes in
the database structure, then you need to make changes in the
entire application program that access the database.

3. Lack of Structural Independence: there is lack of structural
independence because when we change the structure then it
becomes compulsory to change the application too.

4. Operational Anomalies: Hierarchical model suffers from the
insert, delete and update anomalies, also retrieval operation is
difficult.

4.4.2 Network Model

Advantages

1. Conceptual Simplicity: just like hierarchical model it also
simple and easy to implement.

2. Capability to handle more relationship types: the network
model can handle one to one1:1 and many to many N: N
relationship.

3. Ease to access data: the data access is easier than the
hierarchical model.

4. Data Integrity: Since it is based on the parent child relationship,
there is always a link between the parent segment and the child
segment under it.

5. Data Independence: The network model is better than
hierarchical model in case of data independence.

Disadvantages

1. System Complexity: All the records have to maintain using
pointers thus the database structure becomes more complex.

10

2. Operational Anomalies: As discussed earlier in network model
large number of pointers is required so insertion, deletion and
updating more complex.

3. Absence of structural Independence: there is lack of structural
independence because when we change the structure then it
becomes compulsory to change the application too.

4.4.3 Relational Model

Advantages
1. Conceptual Simplicity: We have seen that both the hierarchical
and network models are conceptually simple, but relational model is
simpler than both of those two.

2. Structural Independence: In the Relational model, changes in
the structure do not affect the data access.

3. Design Implementation: the relational model achieves both
data independence and structural independence.

4. Ad hoc query capability: the presence of very powerful, flexible
and easy to use capability is one of the main reason for the
immense popularity of the relational database model.

Disadvantages
1. Hardware overheads: The relational database systems hide the
implementation complexities and the physical data storage details
from the user. For doing this, the relational database system need
more powerful hardware computers and data storage devices.

2. Ease of design can lead to bad design: The relational
database is easy to design and use. The user needs not to know
the complexities of the data storage. This ease of design and use
can lead to the development and implementation of the very poorly
designed database management system.

4.5 BUSINESS RULES

o Business rules are the rules that are created to affect the way
your business works. Usually, these are rules that involve
employees or staff and are rules that specify what they can and
cannot do.

o A great example of a business rule involves marriages. For
many companies, a boss is not allowed to marry an employee
or an accountant at a company is usually not allowed to marry
another accountant.

11

o In this case, the accountants are not allowed to be married
because there is a more likely chance that the spouses can
change financial information and then cover for one another.

o These rules are intended to prevent disruption in a company or
business.

o Business Rules are used every day to define entities, attributes,
relationships and constraints.

o Usually though they are used for the organization that stores or
uses data to be an explanation of a policy, procedure, or
principle.

o The data can be considered significant only after business rules
are defined, without them it’s just records, but to a business they
are the characteristics that are defined and seen by the
company.

o Business Rules help employees focus on and implement the
actions within the organizations environment.

o Some things to think about when creating business rules are to
keep them simple, easy to understand, keep them broad so that
everyone can have a similar interpretation. To be considered
true, business rules must be in writing and kept up to date.

o Identifying business rules are very important to the database
design. Business rules allow the creator to develop relationship
participation rules and constraints and to create a correct data
model.

o They also allow the creators to understand business processes,
and the nature, role and scope of the data.

o They are a communication tool between users and creators,
and they also help standardize the company’s view of the data.

o It is important to keep in mind that some business rules cannot
be modeled.

o Business Rules give the proper classification of entities,
attributes, relationships, and constraints.

o Sources of business rules are managers, policy makers,
department managers, written documentation, procedures,
standards, operation manuals, and interviews with end users.

Some examples of business rules:

Departments------offers---------Course
Course----------generates---------Class
Professor --------teaches----------Class

o There are several protocols to the way business rules are
written. Not every protocol has to be followed, but in general, a

12

well-written set of business rules consist of having a unique
identifier, describes one and only one concept, are written in
plain language, are written, and are from a single source.

o In terms of a unique identifier, business rules should come with
an identifier that may consist of the rule number and the
department it affects. And example would be ‘BRacc01’. In this
case, this business rule (BR) is directly related to the accounting
department.

o Another important aspect of business rules consist of how the
rules are shared within the company.

o A protocol for business rules that many follow is that the
business rules are written down. However, with many
businesses sharing information directly over the internet, some
are opting to place their business rules online in company blogs,
wikis, and websites.

o This shares the business rules with all employees faster and
easier. In relation to how business rules are shred, it is very
important that business rules are written in plain language.

o If business rules are written at a high level language, there is an
increased chance that not every person will understand what
the business rules cover or what is acceptable and what is not.

4.6 SUMMARY

o A data model is a picture or description which shows how the
data is to be arranged to achieve a given task.

o The data structures and access techniques provided by a
particular DBMS are called its data model.

o In 1964 the first commercial database management system
(DBMS) was developed widely known as Integrated Data Store
(IDS).

o A hierarchical database is organized in pyramid fashion, like the
branches of a tree extending downwards.

o In hierarchical model, the parent record at the top of the pyramid
is called the root record and the leaf node is called the child
record.

o Network databases are similar to hierarchical databases by
also having a hierarchical structure.

o The relational model organizes the records and stores the
records in rows and columns.

13

4.7 REVIEW QUESTIONS

1) Explain the need for the data model.

2) Write in detail about the history of data model.

3) Write a short notes on

a. Hierarchical Model

b. Network Model

c. Object Oriented Model

d. Relational Model

4) Explain the merit and demerits of hierarchical model.

5) Explain the merit and demerits of network model

6) Explain the merit and demerits of Relational model.

1

5

Unit Structure

5.0 Objectives
5.1 Database design
5.2 ER-Model
5.3ER Diagram
5.4 Constraints on relationship
5.5 Relational Schemas

5.0 OBJECTIVES

The database design process consists of a number of steps
listed below. We will focus mainly on step 2, the conceptual
database design, and the models used during this step.

Step 1: Requirements Collection and Analysis

 Prospective users are interviewed to understand and document
data requirements

 This step results in a concise set of user requirements, which
should be detailed and complete.

 The functional requirements should be specified, as well as the
data requirements. Functional requirements consist of user
operations that will be applied to the database, including
retrievals and updates.

2

 Functional requirements can be documented using diagrams
such as sequence diagrams, data flow diagrams, scenarios, etc.

Step 2: Conceptual Design

 Once the requirements are collected and analyzed, the
designers go about creating the conceptual schema.

 Conceptual schema: concise description of data requirements of
the users, and includes a detailed description of the entity types,
relationships and constraints.

 The concepts do not include implementation details; therefore
the end users easily understand them, and they can be used as
a communication tool.

 The conceptual schema is used to ensure all user requirements
are met, and they do not conflict.

Step 3: Database Implementation

 Many DBMS systems use an implementation data model, so the
conceptual schema is transformed from the high-level data
model into the implementation data model.

 This step is called logical design or data model mapping, which
results in the implementation data model of the DBMS.

Step 4: Physical Design

 Internal storage structures, indexes, access paths and file
organizations are specified.
Application programs are designed and implemented

ER Model

In software Engineering, an entity relational model is an
abstract and conceptual representation of dataEntity-relationship
modeling is a database modeling method, used to produce a type
of conceptual schema or semantic data model of a system, often
arelational database, and its requirements in a top-down fashion.
Diagrams created by this process are called entity-relationship
diagrams, ER diagrams, or ERDs.

In 1976, Entity relationship model developed by Chen,

ER Model is high level Conceptual model which used Conceptual
design of database where as relational model are used to logical
design of database

3

ER Diagram

 A database can be modeled as

A collection of entities

Relationship among the entities
 An entity is an real world object that exist and it is

distinguishable from other entities

Example Person, company, event, plant

 All the entities in the data model have attributes as known as
properties of an entities

Example: people have names and addresses

An Entity set is a set of an entities of all same type that share the
same properties.

Example: set of all persons ,companies,trees, holidays

ER Diagram

 Rectangles represent entity sets.
 Diamonds represent relationship sets.
 Lines link attributes to entity sets and entity sets to relationship

sets.
 Underline indicates primary key attributes
 Ellipses represent an attributes
 Double Lines represent total participation of an entity in a

relationship set
 Double rectangle represent a weak entity sets

4

Strong Entity type
An entity type which has own distinct primary key that used to
identify specific uniquely from another entity type is called as
Strong Entity type

An Entity type which is independent on some other entity type
icalled Strong Entity type

Example
In the Case of Client entity Client_no is the primary key of Client
entity which is used to uniquely identified among the Client ‘s entity
set

In the case of Customer Entity , Customer_id is the primary key of
Customer Entity which is used to uniquely identified among the
Customer’s entity set

Strong Entity type is represented by rectangle Symbol

Weak entity Type

Entity type which is dependent on some other entity type is
called as Weak entity type

 Weak entity type is dependent on a strong entity and
cannot exist on its own

 It does not have a unique identifier that has partial
identifier

 Partial identifier is represented by double-line

5

Some weak entities assign partial identifiers and such partial
identifiers of an weak entity called as discriminator

Weak entity type is represented by double rectangle.

Identify relationship

Strong entity type is link with the weak entity type

Dependent entity depend upon Employee entity for primary key

Attributes

Properties of an entity or relationship type is called as
attribute Example Staffno, staffname,staff_designation is describes
an entity Staff Value of an attribute play a major role of data strored
in database Each entity will have the value which is assigned to its
attributes Consider an example

Above stated example of Staff Entity which has the attribute
named as staffno, the value which is assigned to the staff attribute
is ‘101’ and the staffname attribute has the value is ‘Mahendra, and
staff_desigination attribute has the value is ‘Manager’

Attribute domains

The set of allowable values which is assigned to one or
more attribute is knowns as Attribute domains

There are types of attributes has been classified Such as
simple and Composite type,single valued and multi valued
attributes Stored and derived attributes, null attributes and Key
attributes

6

1) Simple Attributes
Simple attributes is an attributes which can further divided in

to two parts
Or

An Attribute composed of single compoenent with an
independent existence

For an example: Desgination of an staff and Salary of an staff

Simple Attributes

Composite Attribute

Composite Attribute is an attribute which is futher divided
into many parts

Or

An attributed composed of multiple component, each
component has its own independent existence

Example

Address attributes of an Branch entity that can be further
divided in to sub parts i.e street, city and postalcode as an
attributes

Composite Attributes

7

2) Single valued and Mutli Valued attributes
Single valued attribute is an attribute which as single

value(atomic) for each entity.
Or

An attribute that holds a single valuefor each occurrence of
an entity type

Example: Each branch has only single valued attributes is
known as branch_no

Single Valued attributes

Mutli valued attributes

Mutli valued attribute is an attributes which as many values
for each entity

Or

An attribute that holds multiple values for each occurrence of
an entity type.

Example : Each staff member has multiple mobile numbers

Multivalued Attributes

8

3) Stored and Derived attributes
Stored attributes is an attribute which is used supplied a

value to the related attreibute

Example Date_of_Birth of an staff is a stored attributes

Derived attributes
The value from the derived attribute is derived from the

stored attribute for an example Date_of_Birth is a stored attribute
for an each staff member . The value for an Age can be derived
from the Date_of_ Birth attributes I.e by subtracting the Date_of
_Birth from the Current date, therefore the Stored attributes is used
supplied a value to the related attributes

Null attribute

The attribute which take NULL value when entity does not
have the value to it.

The Null attribute is an attribute their value is unknown,
unassigned and missing information

Key Attributes

This attribute has the unique value for an entity which is used
to identified given row in the table is called as key attribute of an
entity

Example : Staff_ no is an key attribute which has an unique value
which is used to identifies given row in the table

9

Relationships

A set of meaningful relationship among several entities

We used to inidicate the diamond symbol for Relationships among
the several entities, it could read from left to right

Example : Branch has a staff

Degree of relationship

It is the number of entities participated in a particular relational
model

There are two type of degree of relationship.

Binary relationship: A Relationship of degree two is called as
binary relationship

Ternary Relationship: A relationship of degree three is called as
Ternary relationship.

Example

Staff registers a Client at a branch

Relationship set

The collection of similar relationship is known as Relationship set

10

Constraints on relationship

1) Mapping Constraints / Cardinalities

The number (or range) of possible entity type that is associated to
another entity type through a particular entity

Cardinalities indicates that a specific number of entity occurrence of
related entity .

Type of Mapping Constraints

One-to-one (1:1)

One-to-many (1:*)

Many- to-one(*:1)

Many-to-many (*:*)

TypeOne-to-one (1:1)

In this type of Mapping Constrant One record of an entity is
related to the one record of an another entity

That is one row on an table is related to an one row of another table

i.e A is associated with at most one entity in B and Bis associated
with at most one entity in A

Example

Each branch is managed by one member of the staff that’s means
Branch Manager

A member of staff can manage zero or one branch

11

2) One- to- many

In this constraints, One record in the entity can be related with
many record in other entity

A is associated with any number of entities in B

B is associated with at most one entity in A

E.g. each member of staff oversees zero or more prosperity for rent

Every row in the Staff table can have relationship with many rows in
the properityforRent Table

One To Many

In this type Mapping Constraints , Many records in the one enity is
related to the only one records in the other entity

An entity in A is associated with at least one entity in B . an entity in
B can be associated with any number of entities in A.

Example one vendors has many Goods and Many Goods is
purchase by one Vendors

12

Many to Many

In this Mapping Constraints , Many records in the entity is related
Many records in the other entity

An entity in A is associated with any number of entities in B. and an
entity in B is associated with any number of entities in A.

Many Vendors Has Clients and Many Clients has may Vendors

Participation Constraints

There are two types of participation constraints:
Total Participation: Every Instance of the first Entity type must
share with on or more instances of the relationship type with the
other entity type.

The total participation is represented by a dark line or double
line between the relationship and entity

13

Every Branch office is allocated members of Staff

Partial Participation: There exist an instance of the first entity type
that don’t share an instance of the relationship type with the other
entity type.

A member of Staff need not work at a Branch office

Notations used In ER Diagrams For Representing Relations

1) Cardinality Ratio Notation
In this method ,Cardinality ratio (of a binary relationship): 1:1, 1:N,
N:1, or M:N

Shown by placing appropriate numbers on the relationship edges

Eg

Number of Staffs working in Branch

14

2) Min –Max notation
The altermate of notation by specify the pair of integer, that

used to specify the minimum and maximum participation of each
entity type in the form of(min, max)

The Minimum participation of 0 indicate partial participation
where as maximum participation of 1 or more indicates total
participation

At least 5 staff is allocated to branch

Limitation Of Entity Relationship Model

Problems may arise when designing a conceptual data
model called connection traps.
• Often due to a misinterpretation of the meaning of certain
relationships.

Extended Entity Relation Relationship Model

Since 1980 there has been increase in the emergence of
new database application with more demanding application

Basic concepts of ER modeling are not sufficient to
represent the requirement of newer, more complex operation

To overcome the issue of ER modeling there is response in
development of additional ‘semantic’ modeling concept

Semantic concept which is integrated into original ER Model
is known as Extended Entity Relation Relationship Model (EER)

Additional Concept which is includes in the Extended Entity
Relation Relationship Model are specialization/ generalization,
categorization, superclass/subclass, attribute inheritance

Extended EER Model is used the concept of object oriented
such as inheritance

15

Sub classes and Super classes
In some case , entity type has numerous sub-grouping of

its entities because that are meaningful way for representation and
need to be explicitly defined because of their importance

The set listed is a subset of the entities that belong to the
staff entity which means that every entity that belongs to one of the
sub sets is also an Staff

An entity type that includes distinct Subclasses that require
to be represented in a data model is called as super class.

A Subclass is an entity type that has a distinct role and is
also a member of the Superclass.

Staff is the super class where as manager, Secretary, sales
personnel is the subclass

Superclass /Subclass Relationship

Superclass /Subclass Relationship

The relationship between super class and subclass is called
Superclass /Subclass Relationship

In Superclass /Subclass Relationship, the encircled ‘d’
Indicates that there is Superclass /Subclass Relationship, it is
denoted by the symbol

Hence Superclass /Subclass Relationship lead to the object
oriented Concept is called as Inheritance

As the above diagram, Arc drawn above the line towards
Subclass indicated inheritance Relationship

16

Type Inheritance
 The type of an entity is defined by the attributes it possesses,

and the relationship types it participates in.

 Because an entity in a subclass represents the same entity from
the super class, it should possess all the values for its attributes,
as well as the attributes as a member of the super class.

 This means that an entity that is a member of a subclass
inherits all the attributes of the entity as a member of the super
class; as well, an entity inherits all the relationships in which the
super class participates.

Specialization
The process of defining a set of subclasses of super class
The specia;ization is a top down approach of super class and
subclasses
The set of sub classes is based on some distinguishing
characteristic of the super class.

.

Notation for Specialization

 To represent a specialization, the subclasses that define a
specialization are attached by lines to a circle that represents
the specialization, and is connected to the super class.

17

 The subset symbol (half-circle) is shown on each line
connecting a subclass to a super class, indicates the direction of
the super class/subclass relationship.

 Attributes that only apply to the sub class are attached to the
rectangle representing the subclass. They are called specific
attributes.

A sub class can also participate in specific relationship types

Reasons for Specialization

 Certain attributes may apply to some but not all entities of a
super class. A subclass is defined in order to group the entities
to which the attributes apply.

 The second reason for using subclasses is that some
relationship types may be participated in only by entities that are
members of the subclass.

Summary of Specialization
Allows for:

 Defining set of subclasses of entity type
 Create additional specific attributes for each sub class
 Create additional specific relationship types between each sub

class and other entity types or other subclasses.

Generalization

 Generalization is the reverse of specialization and this is a
bottom-up approach
In Generalization, there are Several classes with common
features and generalizing into a super class.

18

Attribute Inheritance
• An entity in a Subclass may possess subclass specific attributes,
as well as those associated with the Superclass

5.6 CODD’S RULE

Dr. E.F Codd was inventor of the relational database model.
This model say that whether the Database management system
follow the relational model or not and what extents model is
relational.

The article mentioned by Dr.E.F.Codd that according to
these rule, There is no database management system fully
implements all the 12 rules what he has been specified

In 1990, The codd rules extended 12 to 18 rules that’s
includes catlog,datatypes,authorization etc.

OverView of codd’s rule

Sr.NO Rule Description

1 The information rule: All the information in the
database should be
represented in the term of
relational or table.Information
should be stored as an
values in a tables

2 The guaranteed access rule All data must be accessible.
The Rule say that there is
fundamental requirement of
primay key for each record in
table ,and there should be no
ambiguity by stating the table
name and its primary key of
the each record in the table
along with columns name to
be acessed

3 Systematic treatment of null
values:

Null values could not be
treated as blank space or
zero values, The null values
are known as unknown
values, unassigned values
should be treated as missing
information and inapplicable
information that should be
treated as systematic ,
distinct from regular values

19

4 Active online catalog based
on the relational model:

The system must support an
online catalog based data
dictionary which hold the
information or description
about the table in the
database

5 The comprehensive data
sublanguage rule:

The system must support at
least one relational language
that through which the data
in the database must be
accessed
1 The language can be

used both interactively
and within application
programs.

The Languauge must
Supports data definition
operations (including view
definitions), data
manipulation operations
(update as well as retrieval),
security and integrity
constraints,
and transaction management
operations (begin, commit,
and rollback).

6 The view updating rule: All the view must be
theoretically updatable can
be updated by the system

7 High-level insert, update,
and delete:

This rules states that in the
relational model, the
structured query language
must performed data
manipulation such as
inserting ,updating and
deleting record on sets of
rows in the table

8 Physical data
independence:

Any change made in the
data is physically stored in
term of data is stored in the
file system through array and
link list must not effect
application that access the
data structure

20

9 Logical data independence: This rule state that changes
in the logical level(rows
,columns and so on) must
not change to the
application’s structure

10 Integrity independence: Data integrity constraints
should be considered as
separated from application
program, the structured
query language which
defines data integrity
constraint must be stored in
the database in term of data
in table that is, in the catalog
and not in the application.

11 Distribution independence: The rules states that the data
can be stored centrally on
the single machine or it can
be stored in the various
location(ditributed) on
various machine but it should
be invisible to the user i.e the
user does not location of
data is stored whether on the
single machine(Centrally
stored) or the distributed
stored.If the location of
database in change then the
existing application must
continually access the
change database

12 The nonsubversion rule: The system must not have
features that allow you to
subvert database structure
integrity. Basically, the
system must not include
back doors that let you cheat
the system for features such
as administrative privileges
or data constraints.

21

Codd’s rule in detail

1) The information rule:
I) All the information in the database should be represented in

the term of relational or table.Information should be stored
as an values in a tables

II) Data should be stored in form a table and no other means to
stored the data

III) E.g.If want to stored data of student in the form of
table.Consider name of Table is Students , it has four
field(i.e column name) Roll_no, Firstname ,Lastname and
date_of_birth and Consist five record mans Five rows

Students Table
Roll_no Firstname Lastname date_of_birth
101 Sachin Godbole 17/07/1981
102 Mahavir Jain 04/12/1985
103 Dinesh Maheshwari 09/10/1987
104 Yogesh Lad 06/11/1985
105 Mahesh Thorat 07/06/1989

2) Guaranteed access rule
I) The guaranteed access All data must be accessible. The

Rule say that there is fundamental requirement of primay
key for each record in table ,and there should be no
ambiguity by stating the table name and its primary key of
the each record in the table along with columns name to be
accessed rule

II) For accessing the data from the table , we must provides
Table name , Primary key(ie Each unique value for each
record(row) in the table) and other column names in the
table to be accessed

III) Considered the above Students table, if we want to find the
First name , Lastname and date_of_birth of student whose
Roll_no is 103

IV) Here , the Roll_no is the primary key for the Students Table,
This Roll_no Columns is distinct from all other
columns,based upon the primary key, all the information
present in the table must be guaranteed accessed

3) Systematic Treatment of Null values

I) Null values could not be treated as blank space or zero
values, The null values are known as unknown values,
unassigned values should be treated as missing information

22

and inapplicable information that should be treated as
systematic , distinct from regular values

II) Null values is very important concept is the database ,A null
values must be represented as missin information in the
table , it is not same as the blank space, dash, or zero, hash
or any other representation

III) A null values means that we don’t know what information
must be provided or entered in to this field name

IV) Null values must be handled logically and consistent manner
4) Active online catalog based on the relational model:

I) The system must support an online catalog based data
dictionary which hold the information or description about the
table in the database

II) User Tables: The user table contains the data about the table
which is created by any users in the database systems

III)System tables: The system table contains the data about the
structure of the database and database object

IV) Metadata: The data which hold the description of table in the
database, the table structure, database structure , the
relationship among the tables, the queries and on , This data
id often called as metadata , in short term, Metadata is data
about the data

V) The collection of the system tables is known as the system
catalogs or data dictionary

5) The comprehensive data sublanguage rule:

I) The system must support at least one relational language that
through which the data in the database must be accessed

II) The language must support all the operation of the following
items:

Data definition
View definition
Data manipulation
Integrity constraints
Authorization
Transaction boundaries (begin, commit and rollback)

23

6) The view updating rule:

I) All the view must be theoretically updatable can be updated
by the system

II) There is ambiguity in this rule, the Structured query
lanagauge support a single updation at a time suppose if we
try combine two or more tables a for a complex views and try
to update the views and the DBMS would fail to update the
records to the respective tables, thereby violating this rule.

IV) If that view doesn’t include the primary key columns in the
view, then each record in the table cannot be updated, thereby
violating this rule.

Eg. If Roll_no column is not present in the view then it is not
possible update the view of the student table

7) High-level insert, update, and delete:

I) This rules states that in the relational model, the structured
query language must performed data manipulation such as
inserting ,updating and deleting record on sets of rows in the
table

II) You expected from the RDBMS, that you can retrieves all
the record from table applying single command on the set of
tables,or by using single query statement, this rules state
that not only retrieves all the record from table but also you
can apply the delete , insert, and update multiple records
should possible by using the single command

III) Considered an example, if you want to delete the record of
the invoices table which are older than six years,you don’t
have locate postion each record and delete them individually
, uou should able to delete set of records in the table using
one single command

IV) The same concept can be apply to inserting and updating
the record

8) Physical data independence:
i) Any change made in the data is physically stored in term of

data is stored in the file system through array and link list
must not effect application that access the data structure

24

This rule say that any change is made in the back
end(SQLServer/oracle) must not effect front end
application(Visual basic/Java)

If the database file renamed or database location is change,
then this should not have effect on the application.

9) Logical data independence:
This rule state that changes in the logical level(rows
,columns and so on) must not change to the application’s
structure

This rule state that it should possible to change the database
design or alter the database design without the user being
aware of it.

Thse change could be to adding a new table in the datable or to
delete the table from the database but the application must
effect for accessing the datastructure

Consider an example if want the performance search the record
in the table, for that reason you have split the Customer table in
to part i.e Customer_India and Customer_Rest,This allows to
search a recor in the Customer_India rapidly, but what about the
exiting user who is referring to the Customer table.In practice it
can be done by creating a view which will combines two table
into the single table with the same name. so that there should
be effect on the application.

10) Integrity independence:
Data integrity constraints should be considered as separated
from application program, the structured query language which
defines data integrity constraint must be stored in the
database in term of data in table that is, in the catalog and not
in the application.

Referential integrity and entity integrity is integral part of the
relational database , in more specific term, the following two
integrity should be apply to the relational database.

i) Entity integrity:The column which have the primary key value
should not contain missing values or duplicate value.This
mean the column should contain the null values and unique
value in the each record set

25

ii) Referential integrity:The column which have the foreign key
value, there must exist a matching primary key column value
mean the foreign key column have duplicate value must be
referential to primary key column value.

11) Distribution independence
The rules states that the data can be stored centrally on the
single machine or it can be stored in the various
location(ditributed) on various machine but it should be
invisible to the user i.e the user does not location of data is
stored whether on the single machine(Centrally stored) or the
distributed stored.If the location of database in change then
the existing application must continually access the change
database

One of the important benefits of networking is that it allows
multi-user access to a database; that is, the users can access
the data which is distributed across the network.

However, it is also possible to distribute the data across the
same network.

This rule also state that even if the table moves from one
location to another location the user should aware of it, it
should be transparent to the user, changing in the location
mean that the application should not be rewriiten.

12 Nonsubversion rule

The system must not have features that allow you to subvert
database structure integrity. Basically, the system must not
include back doors that let you cheat the system for features
such as administrative privileges or data constraints.

To understand another way, a user should not be allowed
access the database by means of other way, other than SQL

26

6

RELATIONAL DATABASE MODEL

Unit Structure

6.0 Objectives

6.1 RELATIONAL DATABASE MODEL:

E.F.codd first proposed the realational database Model also he
is known as the father of Realtional model.

Relation model was attempt to specify the database structure in
term of matrix.ie the database should contain tables.The tables is in
form of set of Columns and Rows. The relational model is set of 2
dimensional table consists of rows and columns

Tables in the database is known as relation and Columns in the
table is called as attributes of an tables and rows in the table is
called records or tuples

In the relational database model consists of set of tables having
the unique name

27

One row in the table represents a relationships among the
another table in the database.The set values in the one table is
related to the set of values in another tables. Thus the table is
represents a collection of relationship, The relationship among the
tables in the form primary key –foreign key relationship

6.2 LOGICAL VIEW OF DATA:

1 introduction

Logical structure of tables is consist of 2- dimensional tables
consist of numbers of horizontal rows and vertical columns

Table Column

Ro
ws

Table is an abstract entity which does not say how the data
is stored in the physical memory of the computer system

Each table in the database has its own unique name trough
which we can refer the content of the table by the unique name

2.Characteristics of an table

I) A tables in the database must be in the two-dimensional structure
which consist number of rows and columns

II) Each row in table as called as record or tuple can represent as a
single entity which is occur within the entity set i.e Customer record
in the Customer table

III) Each column name in the table is called as attribute and each
row in the table is called as record. Each column name in the table
is unique namei.e no duplicate name in the same table cannot be
repeated.

IV)Each rows/ coloumn interection represent a single data item.

V) All the value in the column must be represent in the same data
format
VI) Each columns has the specific range of values, and also
refer as the domain attribute

28

VII) The order of rows and columns is not limited to the DBMS.

3.Example
There is Customer Table contain all information about the

Customer
Cust_id
Cust_Name
Cust_Age
Cust_Address
Cust_Mobile_No
Cust_Phone_No

Attribute

 Each column in the above table represent the data item in the
database

 Each column in the table represent the attribute in the table
 Atleast one column consist in the table
 There must be one unique column in the table , this means that

no two columns has the same name in the same table ,it is
possible to have two column with same colmn name but it in the
different table.

 The ANSI/SQL Standard does not specify a maximum numbers
of rows and columns in the table.

Eg. Cust_id ,Cust_Name ,Cust_Age ,Cust_Address
,Cust_Mobile_No, Cust_Phone_No are the attributes of the
Customer Table

Cust_id Cust_
Name

Cust_
Age

Cust_
Address

Cust_Mobile
_No

Cust_Phone_
No

1 Yogesh 20 Worli 9892456123 0224672345

2 Ramesh 23 Bandra 9320896742 0225678894

3 Ram 18 mahim 9819674534 0224678678

4 Pramod 24 Khar Road 9821673445 0223456478

5 Yatin 25 Dadar 9892396735 0222456783

6 Tushar 26 Matunga 9867458432 0226783452

29

Records/Tuples

 A single Record consist all the information of the single entity.
 Each horizontal row in the Customer table represented a single

entity
 A Table consist any number of rows, The ANSI/SQL Standard

doesnot specify the limits of rows in the table.
 Empty table is called when there is zero row consist in the table

6.3 KEY

Definition

A Column value in the table that uniquely identifies a single
record in the table is called key of an table

A attribute or the set of attribute in the table that uniquely
identifies each record in the entity set is called a key for that entity
set
Types of keys

Simple Key: A key which has the single attribute is known as a
simple key

Composite key: A key which consist two or more attributes is called
a Composite Key.

Example:

Cust_id is a key attribute of Customer Table it is possible to
have a single key for one customer i.e is Cust_id ie Cust_id =1 is
only for the Cust_name =”Yogesh” please refer to the Customer
Table which is mentioned above.

Types of key Definition of Key

Super Key A key is called super key which is sufficient to
identify the unique record in the table

Candidate Key A minimal super key is called Candidate key .A
super key has no proper subset of candidate key

Primary Key A candidate key is chosen as a principal to
identify a unique

Secondary Key

Foreign Key an Column (or combination of Columns) in the
one tables whose values is match the primary key
in the another table

30

Types of key

1 Super Key

A key is called super key which is sufficient to identify the
unique record in the table

Customer Table

Example

Here Cust_id attribute of the entity set Customer is uniquely
identify Customer entity from another so The Cust_id is the Super
key. Another way is, the combination of Cust_id attribute and
Cust_Name attribute is the Super key for the Customer Entity set.
Only the Cust_Name is not called the Super Key because several
customer may have the Same Name

2. candidate key

Defination:

A minimal super key is called Candidate key .A super key
has no proper subset of candidate key

Here Minimum attribute of the super key is omitted unwanted
attributed of an table that key is sufficient for identifying the unique
record in the entity set so it is called as Candidate key

The Candidate key is also known as the primary key

Cust_id Cust_
Name

Cust_
Age

Cust_
Address

Cust_Mobile_
No

Cust_Phone_
No

1 Yogesh 20 Worli 9892456123 0224672345

2 Ramesh 23 Bandra 9320896742 0225678894

3 Ram 18 mahim 9819674534 0224678678

4 Pramod 24 Khar Road 9821673445 0223456478

5 Yatin 25 Dadar 9892396735 0222456783

6 Tushar 26 Matunga 9867458432 0226783452

31

Example

From above statement say combination of Cust_id attribute
and Cust_Name is a super key for the Customer entity set it is
required to distinguish one record on the Customer entity from
another record of sane set.

But Cust_id attribute of the Customer entity is asl known as
minimal super key which also enough to distinguish one record
from customer entity from another record from customer entity set,
because Cust_Name is th additional attribute of the Csutomer table
2 Primary key

Defination
Primary key of the table is a columns or combination of the

some columns whose values is uniquely identify a single record in
the table.

Primary key state no two record of the table contain the
same value in that column or Cobination of the column It state that
a unique identifier for the entity set.

Cust_id Cust_
Name

Cust
_Age

Cust_
Address

Cust_Mobile
_No

Cust_Phone_
No

1 Yogesh 20 Worli 9892456123 0224672345

2 Ramesh 23 Bandra 9320896742 0225678894

3 Ram 18 mahim 9819674534 0224678678

4 Pramod 24 Khar Road 9821673445 0223456478

5 Yatin 25 Dadar 9892396735 0222456783

6 Tushar 26 Matunga 9867458432 0226783452

Cust_id Cust_
Name

Cust_
Age

Cust_
Address

Cust_Mobile
_No

Cust_Phone_
No

1 Yogesh 20 Worli 9892456123 0224672345

2 Ramesh 23 Bandra 9320896742 0225678894

3 Ram 18 mahim 9819674534 0224678678

4 Ram 20 Khar Road 9821673445 0223456478

5 Yatin 25 Dadar 9892396735 0222456783

6 Tushar 26 Matunga 9867458432 0226783452

32

In above table the Customer Age cannot act as primary key
hence the customer age column contain repeated values and
Customer Name also cannot act as primary key because it earlier
state that several customer may have the same name hence
Cust_Name column has the repeated values .

Hence there Cust_id can act as the primary key in the
Customer table this is only column which contain a unique set of
values.

3 Secondary key

Defination

Seconday key of the table consist the column and combination
of the some columns which meant for data retrival purpose.

The secondary key not always required to primary key, other
tah the pimary key there are some attribute which is required to
retrieve data from the customer table using the another attribute
such as Cust_Name and Cust_Age columns

In the above Customer Table Cust_Name and Cust_Age
attribute act as the Secondary key
Foreign Key

A Column (or combination of Columns) in the one tables
whose values is match the primary key in the another table is called
as a foreign key
Foreign key can also have one or more column like as primary key

A single table may contain more than one foreign key which
is related to the more tah one table, the table which used the
foreign key is said the referiential integrity

Cust_id Cust_
Name

Cust_
Age

Cust_
Address

Cust_Mobile_
No

Cust_Phone_
No

1 Yogesh 20 Worli 9892456123 0224672345

2 Ramesh 23 Bandra 9320896742 0225678894

3 Ram 18 mahim 9819674534 0224678678

4 Ram 20 Khar Road 9821673445 0223456478

5 Yatin 25 Dadar 9892396735 0222456783

6 Tushar 26 Matunga 9867458432 0226783452

33

What the referential integrity

Referential integrity say the column which contain foreign
key in one table must be primary key of another table

In general term, Foreign key of Table A must be Primary key of
Table B

Example

Customer Table

Account Table

In The above example Cust_id is the primary key for the
customer Table while Cust_id is the foreing key for the Account
table

Here the the datatype assigned to column and Numder of
column in the foreign key is same as to the primary key.

Cust_id Cust_
Name

Cust_
Age

Cust_
Address

Cust_Mobile_
No

Cust_Phone_
No

Account
No

Cust_id Account
type

Balance Description

Cust_id Cust_
Name

Cust_
Age

Cust_
Address

Cust_Mobile_
No

Cust_Phone_
No

1 Yogesh 20 Worli 9892456123 0224672345

2 Ramesh 23 Bandra 9320896742 0225678894

3 Ram 18 mahim 9819674534 0224678678

4 Ram 20 Khar Road 9821673445 0223456478

5 Yatin 25 Dadar 9892396735 0222456783

6 Tushar 26 Matunga 9867458432 0226783452

34

6.4 REALATIONAL INTEGRITY RULES

1) Entity Integrity

Entity Integrity ensure that there is no duplicate records in
the table and each field that recognizes each record in the table
must have unique value and not having null values

Entity Integrity specfies that every instance of entity have
the unique values ie primary key must be kept and must have the
values other than null values.

Entity Integrity is the mechanism the Database
management system provides to maintain primary keys. The
primary key is known as unique identifier for each rows in the table
. Entity Integrity must have two properties for primary keys:
 The primary key must be unique for each row in the table that

is no two primary key having the same value in the same table,
The primary key values must be distinct i.e the value could not
be repeated.

 The primary key values should not contain null values, primary
key must be NOT NULL

The uniqueness property ensures that the primary key of
each row uniquely identifies it; there are no duplicates. The second
property ensures that the primary key has meaning, has a value; no
component of the key is missing.

2. Referential Integrity
Referential integrity is a property of data which, when satisfied,
requires every value of one attribute (column) of a relation (table) to
exist as a value of another attribute in a different (or the same)
relation (table).

Account
No

Cust_id Account
type

Balance Description

101 1 Saving 10,000

102 2 saving 20,200

103 2 Saving 20,200

104 3 Current 11,000

105 4 Saving 50,000

35

For referential integrity to hold in a relational database, any
field in a table that is declared a foreign key can contain only values
from a parent table's primary key or a candidate key. For instance,
deleting a record that contains a value referred to by a foreign key
in another table would break referential integrity.

Some relational database management systems (RDBMS)
can enforce referential integrity, normally either by deleting the
foreign key rows as well to maintain integrity, or by returning an
error and not performing the delete.

Foreign key

A column or collection of column in one table whose values must
match the primary key in the other table is known as a foreign key

Cust_id Cust_
Name

Cust
_Age

Cust_
Address

Cust_Mobile_
No

Cust_Phone_
No

1 Yogesh 20 Worli 9892456123 0224672345

2 Ramesh 23 Bandra 9320896742 0225678894

3 Ram 18 mahim 9819674534 0224678678

4 Ram 20 Khar Road 9821673445 0223456478

5 Yatin 25 Dadar 9892396735 0222456783

6 Tushar 26 Matunga 9867458432 0226783452

Account
No

Cust_id Account
type

Balance Description

101 1 Saving 10,000

102 2 saving 20,200

103 2 Saving 20,200

104 3 Current 11,000

105 4 Saving 50,000

36

In above example

Cust_id column of Account Table is foreign key for the Account
table while it is primary key for the Customer Table

3. Other integrity rules
NOT NULL. As the integrity rules states column which specify the
NOT NULL values mean these column must contain some values
which should not contain any NULL values
Unique. In this rules no two record or tuples have same values for
the same attribute
Check. In this rule we can apply own integrity rules by applying
CHECK Constraint.

6.5 RELATIONAL DATABASE DESIGN PROCESS

The Relational Database model was proposed by E.F.Codd
in 1969.The Realtional Database Model is based on branch of
mathematics called set theory and predicate logic. The idea behind
to design the Relational Database model is that the database
consist of series of unordered table or relation that can be
manipulated using non-procedural process that return tables

Note: it is Commonly thought that word relational in the relational
model comes from the fact that the tables is related together in the
relational model, but it is inconvenient way to think of the term , but
it is not accurate.. The table which codd is specifies while in
writings was actually referred to as relation (a related set of
Information).

While designing relational database model you have
consider in the mind that how choose a best model in the real world
and how this best model is fitted in the database. While designing
the relational model you have o consider that which table you want
to create, what column the table will consist, consider the
relationship between the tables. While developing the relational
model it would be nice you process was totally clear and intuitive or
it can be even better to automated.

 The benefits of a relational Database Design process.

 Data entry, updating and deleting would be efficient and
simple in manner

 Data retrieval, summarization and reporting will be efficient

37

 Database must follows a well designed model hence it
behave predictably

 Large amount of information must stored in the database
rather than in the application, the database must somewhat
well documented

 Change to database structured are easy to make e.r creating
database, tables , views.

6.5.1 Feature of Good Relational Database Design-
Normalization

i) In the Relational Database Design, the process of organizing
data to minimizing redundancy is known as Normalization

ii) The main aim of the Normalization is to decompose complex
relation into smaller, well-structured relation

iii) Normalization is the process that involves dividing a large
table into smaller table(which contain less redundant data)
and stating the relationship among the tables.

iv) Data normalization or Database Normalization is also
canonical synthesis is mean for preventing the inconsistent
in a set of data by using unique values to reference common
information

v) The main objective of the normalization is to isolate the data
so that user can apply the operation such as addition,
deletion and modification of a field in one table and then its
propagated to the rest of the database through the well
defined relationships

vi) The same set of data is repeated in multiple tables of
database so there are chances that data in the database
may lead to be inconsistent, so while updating , deleting or
inserting the data into the inconsistent database which leads
to problem of data integrity

vii) If we can apply the normalization on the table we can reduce
the problem of data inconsistency for some extent

Definition of Normalization
In the Relational Database Design, the process of

organizing data to minimizing redundancy is known as
Normalization

Main aim of the Normalization
1. Ensure data integrity

i) The correct data should be stored in the database

38

ii) This can be achieved by applying integrity rules in the
database

iii) Integrity rules prevent duplicate values in the database

2. Prevent Data Redundancy in database
i) Non-Normalized data is more vulnerable to data

anomalies. The same set of information is present in the
multiple rows, now if we applying the updating rule on the
table then it lead to logical inconsistence this is known as
update anomaly

An insufficiently normalized table might have one or more
of the following characteristics:

update anomaly
The same set of information is present in the multiple rows,

now if we applying the updating rule on the table then it lead to
logical inconsistence. Consider an example of customer Table
which contain set of attributes such as Cust_id ,Cust_Name,
Cust_Address,

Cust_id Cust_Name Cust_Address
423 Pramod Nerul
423 Pramod Nerul
567 Manish Vashi
567 Manish Bhandup

Thus a change of address of a particular Customer will
need update to multiple records. If the update is not carried out
successfully—if, that is, the Customer’s address is updated on
some records but not others—then the table is remains in an
inconsistent state. Specifically, the table provides conflicting
answers to the question of what this particular customer’s address
is. This Known is known as an update anomaly.

The above Customer Table is Cust_id =567 having
different address in the multiple records

An insertion anomaly
There are some circumstances in which certain fact cannot

recorded at all

39

Example Consider a table Faculty and Course_code consist
the Column name

Faculty_ID,Faculty_Name,Faculty_Hire_Date,Course_Code

Faculty_ID Faculty_
Name

Faculty_Hire_
Date

Course_Code

386 Mahesh
Lad

10/06/1994 ENG-207

197 Jayesh
Shinde

12/06/1987 PP-205

197 Jayesh
Shinde

12/06/1987 PP-206

234 Pramod
Bhave

11/07/2005 ?

Thus we can add the record the details of any faculty member
who teaches at least one course, but we cannot record the details
of a newly-hired faculty member who has not yet been assigned to
teach any courses except by setting the Course Code to null. This
known as an insertion anomaly.

In the above Table Until the new faculty member, Pramod
Bhave , is assigned to teach at least one course, his details cannot
be recorded.

An deletion anomaly.
There are circumstances in which the deletion of data

representing certain facts necessitates the deletion of some
unrelated data . The "Faculty and Courses" table suffers from this
type of anomaly, for if a faculty member temporarily ceases to be
assigned to any courses, we must delete the last of the records on
which that faculty member appears, effectively also deleting the
faculty member. This is known as a deletion anomaly.

40

Faculty_
ID

Faculty_Na
me

Faculty_Hire_
Date

Course_Co
de

386 Mahesh
Lad

10/06/1994 ENG-207

197 Jayesh
Shinde

12/06/1987 PP-205

197 Jayesh
Shinde

12/06/1987 PP-206

Delete

All information about Mahesh Lad is lost when he
temporarily ceases to be assigned to any courses.

Advantage of Normalization

1) Avoids data modification (INSERT/DELETE/UPDATE) anomalies
as each data item lives in One place

2) Greater flexibility in getting the expected data in atomic granular

3) Normalization is conceptually cleaner and easier to maintain and
change as your needs change

4) Fewer null values and less opportunity for inconsistency
5) A better handle on database security

6) Increased storage efficiency

7) The normalization process helps maximize the use of clustered
indexes, which is the most powerful and useful type of index
available. As more data is separated into multiple
tables because of normalization, the more clustered indexes
become available to help speed up data access.

Disadvantage of Normalization

1) Requires much more CPU, memory, and I/O to process thus
normalized data gives reduced database performance

2) Requires more joins to get the desired result. A poorly-written
query can bring the database down

3) Maintenance overhead. The higher the level of normalization,
the greater the number of tables in the database

41

6.6 NORMAL FORM

Normal form are designed for addressing potential problem
in the database such that inconsistent and redundant data which is
stored in the database

Normal form is based on relation rather than table . The
normal form has a set of attribute which table should be satify. The
Following attributes are

1) They describe one entity
2) They do not have duplicate rows, hence there must a

primary key for each row.
3) The columns are unordered
4) The rows are unordered

Types of Normal Forms
1) Edgar F. Codd, the inventor of the relational model,

introduced the concept of normalization and what we now
know as the First Normal Form (1NF) in 1970.

2) Second Normal Form (2NF) and Third Normal Form
(3NF) in 1971,

3) Codd and Raymond F. Boyce defined the Boyce-Codd
Normal Form (BCNF) in 1974.

4) Fourth normal form(4NF)
5) Fifth Normal form(5NF)
6) Higher normal forms were defined by other theorists in

subsequent years, the most recent being the Sixth Normal
Form (6NF) introduced by Chris Date, Hugh Darwen,
and Nikos Lorentzos in 2002.

6.6.1 First Normal Form
This Normal form is introduced by Edgar F. Codd, is

Known as First Normal Form(1NF) in 1971

Definition
A relational database table which consist first normal form

(1NF) is to meets certain minimum set of criteria. These criteria are
basically concerned with ensuring that the table is a faithful
representation of a relation and that it is free of repeating groups

42

1. There are no duplicated rows in the table.

2. Each cell is single-valued (i.e., there are no repeating groups or
arrays).

3. Entries in a column (attribute, field) are of the same kind.

Let us consider the example

Consider a table”Customer_Rental ” consisting the attribute
such as Customer_NO, Cust_Name Property_no,P_Address,
Rent_start, Rent_finish,Rent ,Owner_No,Owner_Name

The above table does not contain the atomaic values in the
Property_no, P_Address , Rent_start, Rent_finish,Rent
,Owner_No,Owner_Name Hence it is called un-normalizes
table,we cannot Insert ,update and delete the record from the table
because it is inconsistent state .The above tabe has to be
normimalized

Customer_
NO

Cust_Name Property_
no

P_Address Rent_start Rent_finish Rent Owner_
No

Owner_Name

CR78 Mahesh
Lad

PG34
PG78

Nerul,Navi
Mumbai
Turbhe, Navi
mumbai

1-July-91
1-Nov-95

30-Oct-95
1-Nov-98

450
500

C045
C093

Sanjay More
Mahavir Jain

CR98 Pramod
Patel

PG34

PG36

PG78

Nerul,Navi
Mumbai
Kalyan,Thane
Karjat,Raigad

1-July-95

1-Nov-97

1-july-96

30-Oct-98

1-Nov-99

1-Nov-97

450

350

450

C045

C093

C093

Sanjay More

Mahavir Jain

Mahavir Jain

Customer_
NO

Cust_Name Property_
no

P_Address Rent_start Rent_finish Rent Owner_No Owner_Name

CR78 Mahesh
Lad

PG34 Nerul,Navi
Mumbai

1-July-91 30-Oct-95 450 C045 Sanjay More

CR78 Mahesh
Lad

PG78 Nerul,Navi
Mumbai

1-Nov-95 1-Nov-98 500 C093 Mahavir Jain

CR98 Pramod
Patel

PG34 Nerul,Navi
Mumbai

1-July-95 30-Oct-98 450 C045 Sanjay More

CR98 Pramod
Patel

PG36 Kalyan,Thane 1-Nov-97 1-Nov-99 350 C093 Mahavir Jain

CR98 Pramod
Patel

PG78 Karjat,Raigad 1-july-96 1-Nov-97 450 C093 Mahavir Jain

43

The above table show the same set of data as the previous
table however we have eliminated the repeated groups.so the table
shown in the above table to be in First Normal form(1NF)

6.6.2 Second Normal Form

Second Normal Form based on the concept of Full
Functional Dependency and it tries remove the problem of
redundant data in the First normal form.

Defination: A 2NF relation in 1NF and every non-primary key
attritube is fully functionally dependent on the primary key

Converting from 1NF to 2NF:

o Firstly Identify the primary key for the 1NF relation.

o Identify whether the functional dependencies in the relation.

o If partial dependencies exist on the primary key remove them by
placing then in a new relation along with a copy of their
determinant.

Example

Functional Dependency for Customer_Rental Relation

Step 1 : Primary key: Customer_No + Property_no

Step 2 :Full Functional Dependency:

(Customer_No+Property_No)->(Rent-Start, RentFinish)

Step3 Partial Dependency:

(Customer_No+Property_No)->Cust_Name

(Customer_No+Property_No)->(P_Address, Rent, Owner_No,
Owner_Name)

Customer
_NO

Cust_
Name

Property_
no

P_Address Rent_start Rent_finish Rent Owner_
No

Owner_
Name

44

Customer Relation

Customer_NO Cust_Name
CR78 Mahesh Lad
CR98 Pramod Patel

Rental Relation

Customer_NO Property_No Rent_start Rent_finish

CR78 PG34 1-July-91 30-Oct-95
CR78 PG78 1-Nov-95 1-Nov-98
CR98 PG34 1-July-95 30-Oct-98
CR98 PG36 1-Nov-97 1-Nov-99
CR98 PG78 1-july-96 1-Nov-97

Property_owner Relation

Property_No P_Address Rent Owner_No Owner_Name
PG34 Nerul,Navi

Mumbai
450 C045 Sanjay More

PG78 Nerul,Navi
Mumbai

500 C093 Mahavir Jain

PG36 Kalyan,Thane 350 C093 Mahavir Jain

Here Customer_no is the only key to identify The Customer
name hence Customer_No is the primary key in the Customer
Relation Table but Forieng key in the Rental relation table

6.6.3Third Normal Form

Third Normal form Based on the concept of transitive dependency.

A relation that is in 1NF and 2NF and in which no non-primary-key
attribute is transitively dependent on the primary key.

Converting from 2NF to 3NF:

o Identify the primary key in the 2NF relation.

o Identify functional dependencies in the relation.

o If transitive dependencies exist on the primary key remove them
by placing them in a new relation along with a copy of their
dominant

45

Property_Owner to 3NF Relations

Property_owner Relation

Property_No P_Address Rent Owner_No Owner_Name

Transitive Dependency:

(Customer_No+Property_No)->Owner_No

Owner_No ->OName

Property_for_Rent

Property_No P_Address Rent Owner_No
PG34 Nerul,Navi

Mumbai
450 C045

PG78 Nerul,Navi
Mumbai

500 C093

PG36 Kalyan,Thane 350 C093

Owner

Owner_No Owner_Name
C045 Sanjay More
C093 Mahavir Jain

46

Process of Decomposition

Customer_Rental1NF

Property_Owner 2NF

Customer Rental

Property_for_Rent Owner 3NF

6.6.4 Boyce-Codd Normal Form (BCNF)

o Based on functional dependencies that takes into account all
candidate keys in a relation.

o For a relation with only one candidate key, 3NF and BCNF are
equivalent.

o A relation is in BCNF, if and only if every determinant is a
candidate key.

o Violation of BCNF may occur in a relation that

– contains 2 (or more) composite keys

– which overlap and share at least 1 attribute

3NF to BCNF

o Identify all candidate keys in the relation.

o Identify all functional dependencies in the relation.

o If functional dependencies exists in the relation where their
determinants are not candidate keys for the relation, remove the

47

functional dependencies by placing them in a new relation along
with a copy of their determinant.

Example - 3NF to BCNF Relations

Client_Interview Relation

Client_No Interview_Date Interview_Date Staff_No Room_No
CR76 13/05/98 10.30 SG5 G101
CR56 13/05/98 12.30 SG5 G101
CR74 13/05/98 12.30 SG37 G102
CR56 01/06/08 10.30 SG5 G102

(Client_No, Interview_Date) -> (Interview_Time, Staff_No,
Room_No)

(Staff_No, Interview_Date, Interview_Time) -> Client_No

(Room_No, Interview_date, Interview_Time) -> Staff_No, Client_No

(Staff_No, Interview_Date) -> Room_No

Client_No Interview_Date Interview_Date Staff_No
CR76 13/05/98 10.30 SG5
CR56 13/05/98 12.30 SG5
CR74 13/05/98 12.30 SG37
CR56 01/06/08 10.30 SG5

Staff_No Interview_Date Room_No
SG5 13/05/98 G101
SG37 13/05/98 G102
SG5 01/06/08 G102

1

7

INTRODUCTION TO UML

Unit Structure

7.0 Objectives
7.1 Introduction

1.0 OBJECTIVES

UML or Unified Modeling Language is a specification which is
used in the software engineering field. It can defined as a general
purpose languge which is used to design as graphical notation
which is used an abstract model and this abstract model is used in
the system. That system is called as UML or Unified Model
language.

2

Why Modeling is required and what is the principle of Model?

Analysis the problem domain that is simply reality captures
requirements in the design the model, visualize the system in its
entirety, and specify the structure and / or behavior of the system

Choose your model well

The choice of model such way that it should be through
analysis of the problem and the design of the solution.

Every model in the system can be expressed at different
levels of accuracy - the same model can be scaled up (or down) to
different granularities.

The best models in the system are closer to reality - simplify
the model as much as possible and don’t hide important details.

No single model suffices - every nontrivial system has
different set of dimensions to the problem and has much solution

UML is an modeling Langauage but not a methodology or
process , the first concept is developed by Grady Booch , James
Rumbaugh and Ivar Jacobson at Rational Software.

This model is accepted as a standard by the Object
Management Group (OMG), in 1997

7.1 TYPE OF UML

The Main purpose of the class diagram is
include the classes within a model. In the object oriented
programming , the classes has certrian attributes(i.e data member)
, operations(member function) and relationship among the objects ,
In the UML the class diagram can be include very easily. The
fundamental part of the class diagram is the class icon which can
represented a class. The class icon which is shown in the figure

Class
attributes
Member function

3

A class icon is simply a rectangle divided into three
compartments. The topmost compartment contains the name of the
class. The middle compartment contains a list of attributes
(member variables), and the bottom compartment contains a list of
operations (member functions). In many diagrams, the bottom two
compartments are omitted. Even when they are present, they
typically do not show every attribute and operations. The goal is to
show only those attributes and operations that are useful for the
particular diagram.

If two classes are very similar it may be helpful to put the
similarities into a more general class called a superclass. For
example, if you set up a superclass called Student, then Graduate
Student and Undergraduate Student can be subclasses of Student.

7. 2 USECASE DIAGRAM

A use case is a set of scenarios that shows an interaction
between a user and a system. A use case diagram shows the
relationship among actors and use cases.

The two main components of a use case diagram are use
cases and actors.

4

An actor is represents a user or another system that will
interact with the system you are modeling. A use case is an
external view of the system that represents some action the user
might perform in order to complete a task.

7. 3 ACTIVITY DIAGRAMS

Activity diagrams are graphical representations
of workflows of stepwise activities and actions with support for
choice, iteration and concurrency.

In the Unified Modeling Language, activity diagrams can be
used to describe the business and operational step-by-step
workflows of components in a system. An activity diagram shows
the overall flow of control.

Activity diagrams are constructed from a limited number of
shapes, connected with arrows. The most important shape types:

 rounded rectangles represent activities;
 diamonds represent decisions;
 bars represent the start (split) or end (join) of concurrent

activities;
 a black circle represents the start (initial state) of the

workflow;
 an encircled black circle represents the end (final state).

Arrows run from the start towards the end and represent the
order in which activities happen.

Hence they can be regarded as a form of flowchart. Typical
flowchart techniques lack constructs for expressing concurrency.
However, the join and split symbols in activity diagrams only
resolve this for simple cases; the meaning of the model is not clear
when they are arbitrarily combined with decisions or loops.

5

7.4 SEQUENCE DIAGRAMS

Sequence diagrams is involved how to the object are
interacted which are arranged in a time sequence. The Sequence
Diagram which is use the flow of events to determine what objects
and interactions I will need to accomplish the functionality specified
by the flow of events.

6

Figure shows how a student successfully gets added to a
course. The student let’s call him Mahesh) fills in some
information and submits the form. The form then talks to the
manager and says “add Joe to Mahesh 102 .” The manager tells
Math 102 that it has to add a student.

Math 102 says to Section 1 “are you open?” In this case,
Section 1 replies that they are open, so Math 103 tells section 1 to
add this student. Again, sequence diagrams are great tools in the
beginning because they show you and your customer step-by-step
what has to happen.

7.5 COLLABORATION DIAGRAMS

7.6 STATECHART DIAGRAM

The statechart diagram models the different states that a
class can be in and how that class transitions from state to state. It
can be argued that every class has a state, but that every class
shouldn't have a statechart diagram. Only classes with "interesting"
states -- that is, classes with three or more potential states during
system activity -- should be modeled.

As shown in Figure 5, the notation set of the statechart
diagram has five basic elements: the initial starting point, which is
drawn using a solid circle; a transition between states, which is
drawn using a line with an open arrowhead; a state, which is drawn
using a rectangle with rounded corners; a decision point, which is

7

drawn as an open circle; and one or more termination points, which
are drawn using a circle with a solid circle inside it. To draw a
statechart diagram, begin with a starting point and a transition line
pointing to the initial state of the class. Draw the states themselves
anywhere on the diagram, and then simply connect them using the
state transition lines.

The example statechart diagram in Figure hows some of the
vital information they can communicate. For example, you can tell
that loan processing department to begin in the Loan Application
state. When the pre-approval process is over, depending whatever
output comes, and then you move to either the Loan Pre-approved
state or the Loan Rejected state. This decision, which is made
during the transition process, is shown with a decision point -- the
empty circle in the transition line. By looking at the example, a
person can tell that a loan cannot go from the Loan Pre-Approved
state to the Loan in Maintenance state without going through the
Loan Closing state. Also, by looking at our example diagram, a
person can tell that all loans will end in either the Loan Rejected
state or the Loan in Maintenance state.

7.7 COMPONENT DIAGRAM

A component diagram provides a physical view of the
system. Its purpose is to show the dependencies that the software

8

has on the other software components (e.g., software libraries) in
the system. The diagram can be shown at a very high level, with
just the large-grain components, or it can be shown at the
component package level.

Modeling a component diagram is best described through
an example. Figure shows four components: Reporting Tool,
Billboard Service, Servlet 2.2 API, and JDBC API. The arrowed
lines from the Reporting Tool component to the Billboard Service,
Servlet 2.2 API, and JDBC API components mean that the
Reporting Tool is dependent on those three components.

7.8 DEPLOYMENT DIAGRAM

The deployment diagram shows how a system will be
physically deployed in the hardware environment. Its purpose is to
show where the different components of the system will physically
run and how they will communicate with each other. Since the
diagram models the physical runtime, a system's production staff
will make considerable use of this diagram. The notation in a
deployment diagram includes the notation elements used in a
component diagram, with a couple of additions, including the
concept of a node. A node represents either a physical machine or
a virtual machine node (e.g., a mainframe node). To model a node,
simply draw a three-dimensional cube with the name of the node at
the top of the cube. Use the naming convention used in sequence
diagrams: [instance name] : [instance type] (e.g.,
"w3reporting.myco.com : Application Server").

9

The deployment diagram in Figure shows that the users
access the Reporting Tool by using a browser running on their local
machine and connecting via HTTP over their company's intranet to
the Reporting Tool.

This tool physically runs on the Application Server named
w3reporting.myco.com. The diagram shows the Reporting Tool
component drawn inside of IBM Web Sphere, which in turn is
drawn inside of the node w3.reporting.myco.com.

The Reporting Tool connects to its reporting database
using the Java language to IBM DB2's JDBC interface, which then
communicates to the actual DB2 database running on the server
named db1.myco.com using native DB2 communication.

In addition to talking to the reporting database, the Report
Tool component communicates via SOAP over HTTPS to the
Billboard Service.

1

8

RELATIONAL ALGEBRA

Unit Structure

8.0 Objectives

8.0 DATA MANIPULATION LANGUAGES

In order to make the database more useful, then it should
possible to store information in database or retrieve the information
from the database. This important role is perform by database
Manipulation Language

There are two types of Data Manipulation language

-Navigational (Procedural)

 The query specifies(to some extent) the stratergy use to
findthe desired result eg relational algebra

-Non-navigational(non-procedural)

 The query only specifies what data is wanted, not how to find
it e.g. relational calculus.

2

8.1 INTRODUCTION

 Codd proposed a number of algebraic operation for the
relational database model

 In the Relation algebra there are two type of operation one is
Unary operation and second one Binary operation

 Unary operation takes as input a single table and produces an
output another table

 Binary operations take as input two tables and produce as
output another table

Fundamental operation
o Unary operation

 Projection operation(π)
o Select Operation(σ)
o Rename Operation(ρ)

o Binary Operation
 SET operation

o Union operation()
o Difference Operation(-)
o Intersection Operation(∩)

 Join Operation()
 Cartesian Product Operation(X)
 Division Operation(%)

8.1.1Selection operation
The Selection operator select the row from the table that

satify a given predicate. This operation allows to manipulate data in
the single relation. The Selection operation is defined by the symbol
called sigma(σ). The predicate is appear at subscript of Sigma
symbol(σ). The argument relation is present in the parenthesis after
the σ

Synatx
σ

<predicate><Comparsion_operator><Constant_value>(<input_table_name>)

Where Predicate: Name of the column in the table

Comparsion_Operator:=,<,<=,>,=>,<>

3

Example

Select all the student from the student table who’s Roll no
is greater than 300

Student

Roll No Students_Name Students_Address
134 Mary 3 Curry Road
356 John 4 Dockyard
500 Steve 6 Nepean Sea Road

σ RollNo > 300(Student)
Roll No Students_Name Students_Address
356 John 4 Dockyard
500 Steve 6 Nepean Sea Road

We can combine several predicates into a larger predicate by using
the connectives and (∧), or (∨), and not (¬).

To find the tuple in the student table where Student name is
john and roll no is greater than 300

σ Students_Name=”John”∧ RollNo > 300(Student)

Roll No Students_Name Students_Address
356 John 4 Dockyard

8.1.2 Projection Operation(π)

This operator is used to select some of the attributes from
the table to produces a desired result set

Note that Projection operation is used to eliminates the
duplicates record s in the table

Syntax

Π<attributes>(<Input_Table_Name>)

4

Example

1) Find the all record from the Student table

ΠRoll No, Students_Name, Students_Address (Student)
Roll No Students_Name Students_Address
134 Mary 3 Curry Road
356 John 4 Dockyard
500 Steve 6 Nepean Sea Road

2) Find the Roll no,student name and student address whose
rollno is greather than 300

ΠRoll No, Students_Name, Students_Address

(σ RollNo>300(Student))
8.1.3 Rename Operator(ρ)

Rename operation gave alternate name to the given column
or to any table by using the operator called Rename operator

This operator is used for selecting some specific column from
multiple table(set of two or more tables) containing multiple
columns having same column name

Rename operator is denoted by the greek letter rho(ρ)

Syntax

ρ<New Name for Column>(<Input_Table_Name>)

1) Find the all record from the Student table

Π e.Roll No, e.Students_Name, e.Students_Address

(ρe(Student))
e.Roll No e.Students_Name e.Students_Address
134 Mary 3 Curry Road
356 John 4 Dockyard
500 Steve 6 Nepean Sea Road

2) Find

5

8.2 BINARY OPERATIONS

• Two relations are (union) compatible if they have the same
set of attributes.

• Example, one table may represent suppliers in one country,
while another table with same schema represents suppliers
in another country.

• For the union, intersection and set-difference operations, the
relations must be compatible.

Union, Intersection, Set-difference
• R1 R2

– The union is the table comprised of all tuples in R1 or R2.
• R1 R2

– The intersection is the table comprised of all tuples in R1
and R2

• R1 - R2
– The set-difference between R1 and R2 is the table

consisting of all tuples in R1 but not in R2.

8.2.1Union Operator
Union operator is used combine all the result form the first

query to the result from the second query

Union operator doesnot eliminate duplicate record from the
database and they prints the result expression

Syntax
(Relation1) (Relation 2)

Example
1) Employee table

EMPNO DEPTNAME EMPFIRSTNAME EMPLASTNAME
101 Sales Jayesh Shinde
102 R&D Preetesh Shinde
103 Marketing Ganesh lad
104 Sales Pooja Lad

6

2) Project Table
PROJECTNO DEPTNAME EMPNO
P1 R&D 103
P2 Sales 104
P3 HR 105

3 Union of the Two Table result in Employee Table and Project
Table

Syntax: select deptname from Employee union select deptname
from Project;

Result: The return value would be sales, marketing, R&D and HR.

8.2.2 Intersect Operator

This operator is find out all the tuples that all the Common tn the
result of Relation 1 and in the Result of Relation 2
Intersect operator doesnot eliminate duplicate record from the
database and they prints the result expression

Syntax

• R1 R2

Example : Get all the employee's full name that are working on a
project.

Syntax: select EMPFIRSTNAME, EMPLASTNAME from
Employee, Project

where Project. EMPNO =Employee. EMPNO;

Result : Ganesh lad Pooja Lad

8.2.3 Difference Operation

The difference builds a relation consisting of all tuples
appearing in the first and not the second of two specified relations.
The difference between two relation R1 and R2, R1 MINUS R2, is
the set of all tuples belonging to R1 and not to R2.

Syntax R1-R2

Example : Find the employee that are in sales department and are
not on project P2.

7

Syntax: select EMPNO from Employee where
DEPTNAME ='Sales' minus

select EMPNO from Project where PROJECTNO ='P2';

Result:EMPNO=101

8.3 CARTESIAN PRODUCT

• R1 R2
– The Cartesian product is the table consisting of

all tuples formed by concatenating each tuple in
R1 with a tuple in R2, for all tuples in R2.

• The Cartesian Product is also an operator which works on
two sets. It is sometimes called the CROSS PRODUCT or
CROSS JOIN.

• It combines the tuples of one relation with all the tuples of
the other relation.

Example of a Cartesian Product

R1

A B
1 x
2 y

R2

C D
a s
b t
c u

R1XR2

A B C D
1 x a s

1 x b t
1 x c u
2 y a s
2 y b t
2 y c u

8

Example
Employee Table

Empno Empname Deptno
101 Ramesh 100
102 Suresh 200
103 Rajesh 100

Department table

Deptno Deptname
100 Sales
200 R &D

When we Join the Two table cross product

Πe.Empno,e.Empname,e.Deptno,d.Deptno,d.Deptname

(ρ e (Employee) X ρ e (Department))

e.E
mpno

e.Empname e.Deptno d.Deptno d.Deptname

101 Ramesh 100 100 Sales
101 Ramesh 100 200 R &D
102 Ramesh 200 100 Sales
102 Ramesh 200 200 R &D
103 Rajesh 101 100 Sales
103 Rajesh 101 200 R &D

9.3.1 Join Operator

Join operator is used to retrieve data from multiple table or relations

Syntax

<tablename> <tablename>

There are various types of join in relational algebra

9

Natural Joins

– Assume R1 and R2 have attributes A in common. Natural join
is formed by concatenating all tuples from R1 and R2 with same
values for A, and dropping the occurrences of A in R2

– R1 R2 = ПA’(σC(R1 R2))

– where C is the condition that the values for R1 and R2 are the
same for all attributes in A and A’ is all attributes in R1 and R2
apart from the occurrences of A in R2.

Course Table

CourseId Title eid
CS51T DBMS 123
CS52S OS 345
CS52T Networking 345
CS51S ES 456

Instructor Table

eid ename
123 Rao
345 Allen
456 Mansingh

Course Instructor

CourseId Title eid ename
CS51T DBMS 123 Rao
CS52S OS 345 Allen
CS52T Networking 345 Allen
CS51S ES 456 Mansingh

Π CourseId,ename Course Instructor

CourseId ename
CS51T Rao
CS52S Allen
CS51S Mansingh

10

8.3.2 Inner Join

• In Inner join, tables are joined together where there is the
match (=) of the primary and foreign keys.

R ⋈ <R.primary_key = S.foreign_key> S

Inner joins return rows only when there is at least one row
from both tables that matches the join condition.
Inner joins eliminate the rows that do not match with a row from the
other table

Student Table

Studid name course
100 Jayesh PH
200 Preetesh CM
300 Pramod CM

Course Table

course# name
PH Pharmacy

CM Computing

Students ⋈ course = course# Courses

Studid
name

course course# Course.name

100 Jayesh PH PH Pharmacy

200 Preetesh CM CM Computing

300 Pramod CM CM Computing

8.3.3 Outer Join

• Inner join + rows of one table which do not satisfy the
condition.

• Left Outer Join:

11

• R <R.primary_key = S.foreign_key> S
• All rows from R are retained and unmatched rows of S are

padded with NULL

Student Table

Studid name Course#
100 Jayesh PH
200 Preetesh CM
400 Pramod EN

Course Table

course# Cname
PH Pharmacy

CM Computing

CH Chemisty

Πe.studid,e.name,e.Course#,c.Course#,c.Cname

(ρ e (Student)= ⋈ ρ c (Course)

e.studid e .
name

e.course# c.course# c.Cname

100 Jayesh PH PH Pharmacy

200 Preetesh CM CM Computing

400 Pramod EN NULL NULL

8.3.4 Right Outer Join

• Right Outer Join: R <R.primary_key = S.foreign_key> S

All rows from S are retained and unmatched rows of R are padded
with NULL

Right outer Jointakes all the record form the right relation S that
unmatched any record in the S relation

12

Student Table

Studid name Course#
100 Jayesh PH
200 Preetesh CM
400 Pramod EN

Course Table

course# Cname
PH Pharmacy

CM Computing

CH Chemisty

Πe.studid,e.name,e.Course#,c.Course#,c.Cname

(ρ e (Student) ⋈= ρ c (Course)

e.studid e .
name

e.course# c.course# c.Cname

100 Jayesh PH PH Pharmacy

200 Preetesh CM CM Computing

NULL NULL NULL CH Chemisty

8.3.5 Full Outer Join

In Full outer join tables on the both sides of operator contains null
values

It will contain record from both relations that do not join with any
record from the other relation. Those tuples will be padded with
NULLs as usual.

S COLA
S COLB

A 1
C 2
D 3
E 4

R COLA R COLB
A 1
B 2
D 3
F 4
E 5

13

R.ColA = S.SColA

A 1 A 1
D 3 D 3
E 5 E 4
B 2 NULL NULL
F 4 NULL NULL
NULL NULL C 2

8.3.5 Relational Division Operator

 It is denoted as ÷.

Let r(R) and s(S) be relations

r ÷ s: - the result consists of the restrictions of tuples in r to the
attribute names unique to R, i.e. in the Header of r but not in the
Header of s, for which it holds that all their combinations with tuples
in s are present in r.

Relation or table "r":-

A B
a 1
b 2
a 2
p 3
p 4

Relation or table "s":-

Thefore r%s

A
b
a
p

B
2
3

14

8.4 EXTENDED RELATIONAL OPERATOR

8.4.1Duplicate-elimination operator

This operator is used remove the duplicate record from the relation

Duplicate-eleinination operator is denoted by δ

δ (R)= is indicate that relation with one copy of each tuple that
appears one or more times in R

Example

R=

A B
1 2
3 4
1 2

δ (R)=

A B
1 2
3 4

Sorting

τL(R)=list of tuples of R, ordered according to attributes on listL

τ cannot be followed by other relational operators.

Example

R=

A B
1 3
3 4
5 2

. τB (R) =[(5,2),(1,3),(3,4)]

15

9.4.2 Aggregation Operators
Operators that summarise or aggregate the values in a single
attribute of a relation.
Operators are the same in relational algebra and SQL.
All operators treat a relation as a bag of tuples.
SUM: computes the sum of a column with numerical values.
AVG: computes the average of a column with numerical values.
MIN and MAX: for a column with numerical values, computes the
smallest or largest value, respectively. for a column with string or
character values, computes the lexicographically smallest or largest
values, respectively.

COUNT: computes the number of non-NULL tuples in a column.

In SQL, can use COUNT (*) to count the number of tuples in a
relation.

Grouping operator
γ L(R) where L is a list of items in the Relation(R) that are either
a) They ate individual attributes or grouping attributes or
b)θ (A), Where θ is an aggregation operator and A the attribute in
the relation(R) to which the aggregation operator is to applied
It is computed by:

1. Group R according to all the grouping attributes on list L.

2. Within each group, compute θ(A), for each element θ(A) on list L.

3. Result is the relation whose columns consist ofone tuple for each
group. The components of that tuple are the values associated with
each element of L for that group.

Example

Let R =

Mall Jeans Price
R-Mall Killer 1500
Metro Mall Lee 1700
Phoenix Mall Live’s 1800
INORBIT MALL Killer 1900
Spykar Lee 1400
Compute γ Jeans,AVG(Price)

16

Group by the grouping attribute(s), Jeans in this
case:

Mall Jeans Price
R-Mall
INORBIT MALL

Killer
Killer

1500
1900

Metro Mall
Spykar

Lee
Lee

1700
1400

Phoenix Mall Live’s 1800

Compute average of price within groups:

Jeans Price
Killer 3400
Lee 3100
Live’s 1800

17

9

RELATIONAL CALCULUS

Unit Structure

9.0 Objectives

Relation calculus comes from one of the mathematical
branches or logic is called predicate calculus.

The differentiate between the relational algebra and
relation calculus : relational algebra provides a series of
procedures that is used for solving the problem and relational
algebra is describe what is problem is

It is closer than relational algebra to how users would
formulate queries in terms of their information needs, rather than in
terms of operations.

Relational calculus is categerious in to two part

1) Tuple relational calculus
2) Domain relational Calculus

Relational Calculus is an non prodeural language where as
relational algebra is procedural lanquage

18

9.1TUPLE RELATIONAL CALCULUS

Tuple calculus is a calculus that was introduced by Edgar F.
Codd as part of the relational model, in order to provide a
declarative database-query language for this data model.
Tuple relational calculus is a non procedural language
We must provide a formal description of the information desired.
Each queries in the Tuple Relation calulus is written as

{t | P (t) }
i.e It is set of tuples t for which predicate P is true
We can also use the notation for describing the tuple
calculus

We use t[a] to indicate the value of tuple t on attribute a

We use t r to indicate that tuple t is in relation r

9.1.1 Selection and Projection

To find out the data from the table we have to use the
operator known as selection and projection that used to select
desired data by applying some predicate calculus or formula on
table

In Tupe realtion Calculus a query can be written for
selection operation(σ) as

σ p (r)= {t | P (t) }

Where as

σ p (r)= Selection operator on the Relation

t= Set of tuples(as called as variable range over tuples)

p= Predicate indiacte that is true for t

each formula in the relation calculus is consist of Connectivity by
logical operator such as

(), or (v)‚ not ()

Set of comparison operators: (e.g., , , , , ,)

Implication (): x y, if x if true, then y is true

x y x v y

19

Set of quantifiers:

 t r (Q(t)) ”there exists” a tuple in t in relation r
such that predicate Q(t) is true

 t r (Q(t)) Q is true “for all” tuples t in relation r

Query to select all attributes of the table

Consider a sample database of an Employee

SSN FirstName LastName Salary
101 Jayesh Shinde 30000
102 Preetesh Shinde 40000
103 Sachin Tendulkar 50000
104 Pravin Kanetkar 35000
105 Mahesh Jadhav 53000

We Want to find all the record of employee table using relational
calculus

Select all the Employee whose having the salary more than 30000

σsalary>30000 (Employee)={t|tEmployeet[Salary]>30000}

SSN FirstName LastName Salary
102 Preetesh Shinde 40000
103 Sachin Tendulkar 50000
104 Pravin Kanetkar 35000
105 Mahesh Jadhav 53000

Query 2 Find the SSN for each Employee whose having salary
more than 30000

ΠSSN (σSalary>30000(Employee))={t| t Employee[SSN]=t[SSN]
t[Salary]>300000}

SSN
102
103
104
105

20

9.1.2 SET Operations

In set operation, two or more select statement is
combined together to form as desired result

On other hand the set operation combines rows from
two or more different queries

In select statement, there must be same number of
columns retrieve from the two or more queries

There must be same data tape or compitable type of each
columns in select statement

In tuple realational calculus ,a query can be written as

r s={t|t r or t s}
Where,
t= Set of tuples(as called as variable range over tuples)
p= Predicate indiacte that is true for t
Reserves Table

SID BID Day
22 101 10/10/96
95 103 11/12/96

Sailor Table

SID Sname rating age
22 Jayesh 7 45.0
31 Preetesh 8 55.5
95 Pramod 3 63.5

Find the all Sailors ID whose rating is greater than 2 ,here we use
the union operator in the relational algebra,In the relational
calculus we used two exists clause and Connected by or

πSID (Reserves) πSID (Sailor)={t|s Reserves(t[SID]=s[SID]) v
uSailor (t[SID]=u[SID] rating>2}

SID
22
31
95

21

In This above Example duplicate record is eliminated

Query to select the data using Intersection operator

Find the those Sailors ID whose rating is greater than 7 ,here we
use the Intersect operator in the relational algebra,In the relational
calculus we used two exists clause and Connected by And

πSID (Reserves) ∩ π SID (Sailor)={t|s Reserves(t[SID]=s[SID])
uSailor (t[SID]=u[SID] rating>7}

SID
31

In This above Example duplicate record is eliminated

Query to select data using difference operator

9.1.3 Cartesian Product Operation

In Cartesian product operation defines as everty tuples of realtion R
combines with every relation S

In the Relational Cartesian Product , The result will return as all the
attributes from both relation R and S.

Syntax

r x s={tq|tr and rs}

Consider two table Employee and Department

EmployeeID Designation
101 Lecturer
102 Assistant Professor
103 Professor

DepartNumber DepartName
E1 Electrical
C1 Computer
E3 Electronics

In The tuple Relational calculus , requires two exits clause they are
connected by

22

The Query Can be Written as

ΠEmployeeID (EmployeeXDepartment)={t| sEmployee
uDepartment}

EmployeeID Designation DepartNumber DepartName
101 Lecturer E1 Electrical
102 Assistant Professor E1 Computer
103 Professor E1 Electronics
101 Lecturer C1 Electrical
102 Assistant Professor C1 Computer
103 Professor C1 Electronics
101 Lecturer E3 Electrical
102 Assistant Professor E3 Computer
103 Professor E3 Electronics

9.1.4 Join Operator

Join operator is used to retrieves data from mutiple relations

Syntax

r s={tq|tr and rs}

Example

Retrives data from the two table knowns asEmployee and
Department

EmployeeID Designation DepartNumber
101 Lecturer E1
102 Assistant Professor C1
103 Professor E3

DepartNumber DepartName
E1 Electrical
C1 Computer
E3 Electronics
In The tuple Relational calculus , requires two exits clause they are
connected by

Find the Employee Id whose teaches in the Computer Department

ΠEmployeeID (Employee Department)={t| sEmployee (
t[EmployeeID]=s[EmployeeID]

23

uDepartment(u[DepartNumber]=s[DepartNumber]
u[DepartName]=’Computer’))}

EmployeeID
102

9.1.5 Division Operator

The division of relation R over relation S is denoted by R% S

Conisder an example Student table has two attributes Student
Name and Marks and another table is Marks

Student name Marks
Dinesh 97

Arun 100
Kamal 98
Jay 85
Virat 98
Mahendra 95
Dharmendra 95

Marks
98

10. 2 Domain Relational Calculus

In computer science, domain relational calculus (DRC) is
a calculus that was introduced by Michel Lacroix and Alain
Pirotte as a declarative database query language for the relational
data model.

In DRC, queries have the form:

where each Xi is either a domain variable or constant,
and denotes a DRC formula. The result of
the query is the set of tuples Xi to Xn which makes the DRC formula
true.
This language uses the same operators as tuple calculus, the
logical connectives ∧ (and), ∨ (or) and ¬ (not). The existential

24

quantifier (∃) and the universal quantifier (∀) can be used to bind
the variables.

Its computational expressiveness is equivalent to that of Relational
algebra

Example Domain Relational Calculus

1) Find the names of all Clerks who earn more than RS 10,000.

{fN, lN | (sN, posn, sex, DOB, sal, bN) (Staff (sN, fN, lN, posn, sex,
DOB, sal, bN)

posn = ‘Clerks’sal > 10,000)}

2) List the staff who manage properties for rent in Mumbai.

{sN, fN, lN, posn, sex, DOB, sal, bN | (sN1,cty)
(Staff(sN,fN,lN,posn,sex,DOB,sal,bN) PropertyForRent(pN, st, cty,
pc, typ, rms, rnt, oN, sN1, bN1) (sN=sN1) cty=‘Mumbai’)

3) List the names of staff who currently do not manage any
properties for rent.

{fN, lN | (sN) (Staff(sN,fN,lN,posn,sex,DOB,sal,bN) (~(sN1)
(PropertyForRent(pN, st, cty, pc, typ, rms, rnt, oN, sN1,
bN1)(sN=sN1))))}

4)Retrieve names of all professors who have
taught Management345

{ N ∃I∈ professor.Id ∃D ∈ Professor.Dept.Id (Professor
(I,N,D) AND ∃S∈ Teaching .Semester (Teaching
(I,MGT345,S)))}

This can be abbreviated

{N | Professor (I, N, D) AND(Teaching(I,MGT345,S)}

1) All courses that have been taken by every student:

{ C| Course(D,C,C,D) AND ∀S∈ Students .Id (Transcript
(S,C,SEM,G))}

2) Find all students who have ever taken a course from every
professor who has ever taught a course.

{I | Transcript(S,C,SEM,G1) AND ∀PI∈ Teaching .ProfId
(Teaching(PI,C2,SEM2) AND Transcript(S,C,SEM,G2)

25

3) Retrieve IDs of students who did not take any courses in
F2001:

{I |Student (I, N, A, S} AND NOT Transcript (I, C, F2001, G)}

4) Find potential student graders for this semester's courses:

{P, C, S| Teaching (P, C, S2002) AND Transcript(S, C, SEM, G
AND SEM<> S2002}

5) Find all loan numbers for loans with an amount greater than
$1200:

{ < l > | ∃ a, b (< l, a, b > ∈ loan ⋀ a > 1200) }

Equivalent Relational Algebra expression

Πloan_number (σamount > 1200 (loan))

10) Find the loan numbers of all loans made jointly to Amit and
Ramesh.

{ < l > | ∃ x (<x, l> ∈ borrower ⋀ x = “Amit”) ⋀ ∃ x (<x, l> ∈
borrower ⋀ x = “Ramesh”)}

11)Find the names of all customers who have a loan from the Kurla
branch, and find the loan amount.

{ < c,a > | ∃ l (<c, l> ∈ borrower ⋀ ∃ b (<l, b, a> ∈
loan ⋀ b = “Kurla”)}

12) Find branch name, loan number, customer name and
amount for loans of over $1200.

{<b,l,c,a>|< b,l,c,a >∈ borrow ⋀ a> 1200

13)Find all customers who have a loan for an amount >
than $1200.

{<c> | ∃b ,l,a(<b,l,c,a >∈ borrow ⋀ a> 1200)}

14) Find all customers having a loan from the MTU
branch, and the city in which they live.

{<c,x> |∃b ,l, a(<b,l,c,a >∈ borrow ⋀ b =”MTU” ⋀ ∃y (<c,y,x >∈
Customer))}

26

15) Find all customers having a loan, an account or both
at the MTU branch.

{<c,x> |∃b ,l, a(<b,l,c,a >∈ borrow ⋀ b =”MTU”) ∨ ∃ b,a,n(<b,a,c,n
>∈ deposit ⋀ = “MTU”}

16)Find all customers who have an account at all branches located
in Kurla.

{<c > |∀ x,y,z (¬ (<x,y,z >∈ branch ⋀ z≠”Kurla”) ∨ (∃
,a,n(<x,a,c,n >∈ deposit)))}

9.3 RELATIONAL ALGEBRA VS RELATIONAL
CALCULUS

Sr.No Relational Algebra Relational Calculus
1 Relational Algebra is a procedural

query language, very useful for
representing execution plans,
relatively close to SQL.

The tuple Relational
calculus is a non-
procedural language,
Lets users describe
what they want,
rather than how to
compute it.

2 Relational algebra indicates
operation on table that ptoduces a
new tables ar a result

Relation Calculus
defines a new table
by providining
representation in
term of given relation

3 In relation algebra , A query can be
written with help of relational
operator known as selection,
projection etc.
ΠColumnname(σCondition(<TableName>)
Table is name of the input relation

In Relational Calculus
A query Can be
written as
{t|P(t)}
I.e The set of tuple t
where Predicate P is
true

4 In relation algebra , we need
provide a series of procedures that
use to generated the answer to
respond of set of query

In relational Calculus
we needs to provides
a formal description
of the information

UNIT V: CONSTRAINTS, VIEWS AND SQL

10
CONSTRAINTS

Unit Structure
10.0 Objectives
10.1 Introduction
10.2 Types of Constraints
10.3 Integrity Constraints

10.0 OBJECTIVES:

 What are constraints?
 What are types of constraints?
 Integrity constraints

10.1 INTRODUCTION

Definition:
Constraints are used to limit the type of data that can go into

a table.
s

Constraints can be specified when a table is created (with
the CREATE TABLE statement) or after the table is created (with
the ALTER TABLE statement).

Syntax:

Create table table_name
{

Column
data_type[column_constraint_Name][Column_constraint],

Column datatype[DEFAULT expr] [column_constraint],
....................
[table_contraint][....]

}

2

Example:
Some attributes in the table are not required so such

columns can be defined as NULL constraint. In the EMPLOYEE
table it is allowed insert row having Phone number column as
NULL.

Create table EMPLOYEE
{

Did varchar(10),
EName varchar(10),
Phone_Number char (100) NULL

}

Data Integrity
Constraints are used to enforce the data integrity. This

ensures the accuracy and reliability of the data in the database.
The following categories of the data integrity exist:

 Entity Integrity
 Domain Integrity
 Referential integrity
 User-Defined Integrity

Entity Integrity ensures that there are no duplicate rows in a table.
Ex: Unique, Primary Key

Domain Integrity enforces valid entries for a given column by
restricting the type, the format, or the range of possible values.
Ex: check, Null, not Null

Referential integrity ensures that rows cannot be deleted, which
are used by other records (for example, corresponding data values
between tables will be vital).
Ex: Foreign Key

User-Defined Integrity enforces some specific business rules that
do not fall into entity, domain, or referential integrity categories.

10.2 TYPES OF CONSTRAINTS

Constraints can be defined in two ways:-
1) The constraints can be specified immediately after the column
definition. This is called column-level definition.

2) The constraints can be specified after all the columns are
defined. This is called table-level definition.

3

Some of the Constraints are listed below:

 NOT NULL
 UNIQUE
 PRIMARY KEY
 FOREIGN KEY
 CHECK

NOT NULL CONSTRAINT
 The NOT NULL constraint enforces a column to NOT accept

NULL values.
 The NOT NULL constraint enforces a field to always contain

a value. This means that you cannot insert a new record, or
update a record without adding a value to this field.

Syntax to define a Not Null constraint:

[CONSTRAINT constraint name] NOT NULL

For Example:

To create an employee table that enforces the "E_Id" column and
the "LastName" column to not accept NULL values:

Create Table EMPLOYEE
(
E_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

 UNIQUE KEY CONSTRAINT

This constraint ensures that a column or a group of columns in
each row have a distinct value. A column(s) can have a null value
but the values cannot be duplicated.

Syntax to define a Unique key at column level:

[CONSTRAINT constraint_name] UNIQUE

Syntax to define a Unique key at table level:

[CONSTRAINT constraint_name] UNIQUE(column_name)

For Example: To create an employee table with Unique key, the
query would be like,

4

Unique Key at column level:

CREATE TABLE employee
(E_Id number(5) PRIMARY
KEY,
name char(20),
dept char(10),
age number(2),
salary number(10),
location char(10) UNIQUE
);

OR

CREATE TABLE employee
(E_Id number(5) PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
salary number(10),
location char(10) CONSTRAINT
loc_un UNIQUE
);

Unique Key at table level:

CREATE TABLE employee
(E_Id number(5) PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
salary number(10),
location char(10),
CONSTRAINT loc_un UNIQUE(location)
);

 PRIMARY KEY CONSTRAINTS:

The PRIMARY KEY constraint uniquely identifies each record in a
database table.
Primary keys must contain unique values.
A primary key column cannot contain NULL values.
Each table should have a primary key, and each table can have
only ONE primary key.

Syntax to define a Primary key at column level:

column name datatype [CONSTRAINT constraint_name] PRIMARY
KEY

Syntax to define a Primary key at table level:

[CONSTRAINT constraint_name] PRIMARY KEY
(column_name1,column_name2,..)

 column_name1, column_name2 are the names of the
columns which define the primary Key.

 The syntax within the bracket i.e. [CONSTRAINT
constraint_name] is optional.

5

For Example: To create an employee table with Primary Key
constraint, the query would be like.

Primary Key at table level:

CREATE TABLE employee
(E_Id number(5) PRIMARY
KEY,
name char(20),
dept char(10),
age number(2),
salary number(10),
location char(10)
);

OR

CREATE TABLE employee
(E_Id number(5) CONSTRAINT
emp_id_pk PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
salary number(10),
location char(10)
);

Primary Key at table level:

CREATE TABLE employee
(E_Id number(5),
name char(20),
dept char(10),
age number(2),
salary number(10),
location char(10),
CONSTRAINT emp_id_pk PRIMARY KEY (id)
);

 FOREIGN KEY CONSTRAINT

 This constraint identifies any column referencing the
PRIMARY KEY in another table.

 It establishes a relationship between two columns in the
same table or between different tables.

 For a column to be defined as a Foreign Key, it should be a
defined as a Primary Key in the table which it is referring.
One or more columns can be defined as foreign key.

Syntax to define a Foreign key at column level:

[CONSTRAINT constraint_name] REFERENCES
Referenced_Table_name(column_name)

6

Syntax to define a Foreign key at table level:

[CONSTRAINT constraint_name] FOREIGN KEY(column_name)
REFERENCES referenced_table_name(column_name);

For Example:

1) Lets use the "product" table and "order_items".

Foreign Key at column level:

CREATE TABLE product
(product_id number(5)
CONSTRAINT pd_id_pk
PRIMARY KEY,
product_name char(20),
supplier_name char(20),
unit_price number(10)
);

OR

CREATE TABLE order_items
(order_id number(5)
CONSTRAINT od_id_pk
PRIMARY KEY,
product_id number(5)
CONSTRAINT pd_id_fk
REFERENCES,
product(product_id),
product_name char(20),
supplier_name char(20),
unit_price number(10)
);

Foreign Key at table level:

CREATE TABLE order_items

(order_id number(5) ,

product_id number(5),

product_name char(20),

supplier_name char(20),

unit_price number(10)

CONSTRAINT od_id_pk PRIMARY KEY(order_id),

CONSTRAINT pd_id_fk FOREIGN KEY(product_id)

REFERENCES product(product_id)

);

2) If the employee table has a 'mgr_id' i.e, manager id as a foreign
key which references primary key 'id' within the same table, the
query would be like,

7

CREATE TABLE employee
(E_Id number(5) PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
mgr_id number(5) REFERENCES employee(id),
salary number(10),
location char(10)
);

 CHECK CONSTRAINTS:

This constraint defines a business rule on a column. All the rows
must satisfy this rule. The constraint can be applied for a single
column or a group of columns.

Syntax to define a Check constraint:

[CONSTRAINT constraint_name] CHECK (condition)

For Example: In the employee table to select the gender of a
person, the query would be like

Check Constraint at column level:

CREATE TABLE employee
(E_Id number(5) PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
gender char(1) CHECK (gender in ('M','F')),
salary number(10),
location char(10)
);

Check Constraint at table level:

CREATE TABLE employee
(E_Id number(5) PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
gender char(1),
salary number(10),
location char(10),
CONSTRAINT gender_ck CHECK (gender in ('M','F'))
);

8

10.3 INTEGRITY CONSTRAINTS

 Constraints are used to maintain integrity of database so
they are also called as data Integrity constraints

 Data integrity constraints provide a way of ensuring that
changes made to the database by authorised users do not
result in a loss of data consistency and correctness.

 An integrity constraint can be any arbitrary predicate or
condition applied to the database.

 Integrity constraints may be difficult to evaluate, so will only
consider integrity constraints that can be tested easily with
minimal overhead.

 Integrity constraint with E-R models

 Key declarations: ability that the certain attributes of
relations can form a candidate key for a given entity set.

 Form of a relationship: Mapping cardinalities like 1:1, 1-
Many and Many to many.

 To maintain integrity in the database we have many types of
constraints which can keep database in integrity state.

11

VIEWS

Unit Structure
11.0 Objectives
11.1 Introduction

11.0 OBJECTIVES:

 Introduction to views

 Data Independence

 Security

 Updates on views

 Comparison between tables and views

11.1 INTRODUCTION

Definition:

 A view is a virtual table that consists of columns from one or
more tables.

 A virtual table is like a table containing fields but it does not
contain any data. In run time it contains the data and after
that it gets free.

 But table stores the data in database occupy some space.
 Just like table, view contains Rows and Columns which is

fully virtual based table.

 Base Table -The table on which view is defined is called as
Base table.

2

CREATING A VIEW
This statement is used to create a view.

Syntax:
CREATE VIEW view_name

 The CREATE statement assigns a name to the view and
also gives the query which defines the view.

 To create the view one should must have privileges to
access all of the base tables on which view is defined.

 The create view can change name of column in view as per
requirements.

HORIZONTAL VIEW
A Horizontal view will restrict the user’s access to only a few rows
of the table.

Example:

Define a view for Sue (employee number 1004) containing only
orders placed by customers assigned to her.

CREATE VIEW SUEORDERS AS
SELECT *
FROM ORDERS
WHERE CUST IN
(SELECT CUST_NUM FROM CUSTOMERS WHERE
CUST_REP=1004)

VERTICAL VIEW
A vertical view restricts a user’s access to only certain columns of a
table.

Ex:
CREATE VIEW EMP_ADDRESS AS
SELECT EMPNO, NAME, ADDR1, ADDR2, CITY
FROM EMPLOYEE

ROW/COLUMN SUBSET VIEW.
 Views can be used to restrict a user to access only selected

set of rows and columns of a table in a database.

 This view generally helps us to visualize how view can
represent the base table.

 This type of view is combination of both horizontal and
vertical views.

3

Ex:
CREATE VIEW STUDENTS_PASSED AS
SELECT ROLLNO, NAME, PERCENTAGE
FROM STUDENTS
WHERE RESULT =’PASS’

GROUPED VIEW
 A grouped view is one in which query includes GROUPBY

CLAUSE.

 It is used to group related rows of data and produce only one
result row for each group.

Ex:
Find summary information of Employee Salaries in sales

Department.

Defining View

CREATE VIEW Summary_Empl_Sal
(
Total_Employees,
Minimum_salary,
Maximum_Salary,
Average_salary,
Total_salary
)
AS
SELECT COUNT(EmpID),
Min(Salary),
Max(Salary),
Avg(Salary),
SUM(Salary),
FROM Employee
GROUP BY Department
HAVING Department=’Sales’;

View Call
Selelct *
From Summary_Empl_Sal

The above Query will give,
Total No. Of Employees in sales Department, Minimum Salary in
sales Department.

4

Maximum Salary in sales Department.
Average Salary in sales Department.
Total Salary of Employees in sales Department.

JOINED VIEWS
 A Query based on more than one base table is called as

Joined View.

 It is also called as Complex View

 This gives a way to simplify multi table queries by joining two
or more table query in the view definition that draws its data
from multiple tables and presents the query results as a
single view.

 The view once it is ready we can retrieve data from multiple
tables without joining any table simply by accessing a view
created.

Ex:
Company database find out all EMPLOYEES for respective
DEPARTMENTS.

Schema Definition:

EMPLOYEE-> EmpID, EmpName, Salary, DeptID
DEPARTMENT-> DeptID, DeptName

View Definition

CREATE VIEW Emp_Details
As
Select Employee,EmpID,
Department, DeptID,
Department, DeptName
From
Where Employee.DeptID=Department.DeptID;

View Call
Select * from Emp_Details

DROPPING VIEW
When a view is no longer needed, it can be removed by using
DROP VIEW statement.
Syntax:

DROP VIEW <VIEW NAME> [CASCADE/RESTRICT]

5

CASCADE: It deletes the view with all dependent view on original
view.

RESTRICT: It deletes the view only if they’re in no other view
depends on this view.

Example:
Consider that we have view VABC and VPQR .View VPQR
depends on VABC.

Query:
DROP view VABC

If we drop VABC, then cascading affect takes place and view
VPQR is also dropped.
Thus default option for dropping a view is CASCADE. The
CASCADE option tells DBMS to delete not only the named view,
but also query views that depend on its definition. But,

QUERY:
DROP view VABC RESTRICT

Here, the query will fail because of RESTRICT option tells DBMS to
remove the view only if no other views depend on it. Since VPQR
depends on VABC, will cause an error.

UPDATING VIEWS
 Records can be updated, inserted, and deleted though

views.

 UPDATAEBLE VIEWS are those in which views are used
against INSERT, DELETE and UPDATE statements.

The following conditions must be fulfilled for view updates:
 DISTINCT must not be specified; that is, duplicate rows must

not be eliminated from the query results.

 The FROM clause must specify only one updateable table;
that is, the view must have a Single source table for which
the user has the required privileges. If the source table is
itself a view, then that view must meet these criteria.

 Each select item must be a simple column reference; the
select list cannot contain expressions, calculated columns,
or column functions.

 The WHERE clause must not include a subquery; only
simple row-by-row search conditions may appear.

 The query must not include a GROUP BY or a HAVING
clause.

6

Data Independence

A major purpose of a database system is to provide the users with
an abstract view of data.

To hide the complexity from users database apply different levels of
abstraction. The following are different levels of abstraction.

i. Physical Level
ii. Logical Level
iii. View Level

Physical Level

 Physical Level is the lowest level of abstraction and it
defines the storage structure.

 The physical level describes complex low level data
structures in detail.

 The database system hides many of the lowest level storage
details from the database programmers.

 Database Administrators may be aware of certain details of
physical organization of data.

Logical Level

 This is the next higher level of abstraction which describe
what data are stored in database, relation between data,
types of data etc .

 Database programmers, DBA etc knows the logical structure
of data

View Level

 This the highest level of abstraction.

 It provides different view to different users. At the view level
users see a set of application programs that hide details of
data types.

 The details such as data type etc are not available at this
level.

 Only view or Access is given to a part of data according to
the users access right

Physical Data Independence

The changes in Physical Level does not affect or visible at the
logical level.
This is called physical data independence.

7

Logical Data Independence
The changes in the logical level do not affect the view level.
This is called logical data independence.

ADVANTAGES OF VIEWS

1. Security Each user can be given permission to access the
database only through a small set of views that contain the specific
data the user is authorized to see, thus restricting the user’s access
to stored data.

2. Query simplicity A view can draw data from several different tables and
present it as a single table, turning multi table queries into single-table
queries against the view.

3.Structural simplicity Views can give a user a personalized view
of the database structure, presenting the database as a set of
virtual tables that make sense for that user.

4.Insulation from change A view can present a consistent,
unchanged image of the structure of the database, even if the
underlying source tables are split, restructured, or renamed. Note,
however, that the view definition must be updated whenever
underlying tables or columns referenced by the view are renamed.

5. Data integrity If data is accessed and entered through a view,
the DBMS can automatically check the data to ensure that it meets
specified integrity constraints.

DISADVANTAGES OF VIEWS
While views provide substantial advantages, there are also three
major disadvantages to using a view instead of a real table:

• Performance
Views create the appearance of a table, but the DBMS must still
translate queries against the view into queries against the
underlying source tables.

If the view is defined by a complex multitable query, then even a
simple query against the view becomes a complicated join, and it
may take a long time to complete.

However, the issue isn’t because the query is in a view—any poorly
constructed query can present performance problems—the hazard
is that the complexity is hidden in the view, and thus users are not
aware of how much work the query is performing.

8

• Manageability
Like all database objects, views must be managed. If developers

and database users are allowed to freely create views without
controls or standards, the DBA’s job becomes that much more
difficult.

This is especially true when views are created that reference other
views, which in turn reference even more views.

The more layers between the base tables and the views, the more
difficult it is to resolve problems attributed to the views.

• Update restrictions
When a user tries to update rows of a view, the DBMS must
translate the request into an update on rows of the underlying
source tables.

This is possible for simple views, but more complex views cannot
be updated; they are
read-only.

COMPARISON BETWEEN TABLES AND VIEWS

VIEWS
 View comprises of Query in view definition.

 Just like table, view contains Rows and columns which is
fully virtual based table.

 The fields in a view are fields from one or more real tables in
the database.

 When view is called, it does not contain any data. For that, it
goes to memory and fetches data from base table and
displays it.

 E-g: - An I.T. Faculty requires only I.T. related data of
students so we can create view called as Stud_IT_View for
Faculty as below which will only depicts I.T. data of students
to I.T. faculty.

 A virtual table is like a table containing fields but it does not
contain any data. In run time it contains the data and after
that it gets free. But table stores the data in database occupy
some space.
Stud_IT_View (Student_Id,Student_Name, I.T.)
We can also add functions like WHERE and JOIN
statements to a view and present the data as if the data
were coming from one single table.

9

TABLES
 Table stores the data and database occupies some space in

database.

 Tables contain rows and columns, columns representing
fields and rows containing data or records.

EX:
Consider a Employee containing following columns,
EMPLOYEE (Emp_ID, EmpName, Designation, Address, Salary)

12

STRUCTURED QUERY LANGUAGE

Unit Structure
12.0 Objectives
12.1 Introduction

12.0 OBJECTIVES:

 Data Definition
 Aggregate Functions
 Null Values
 Nested Sub queries
 Joined relations
 Triggers

12.1 INTRODUCTION
 SQL stands for Structured Query Language
 It lets you access and manipulate databases.
 SQL was developed at IBM by Donald D. Chamberlin and

Raymond F. Boyce in the early 1970s.
 The first commercial relational database was released by

Relational Software (Later called as Oracle).
 SQL is not a case sensitive as it is a keyword based

language and each statement begins with a unique keyword.

FEATURES OF SQL

 SQL can execute queries against a database
 SQL can retrieve data from a database
 SQL can insert ,Update, Delete, records in a database
 SQL can create stored procedures in a database
 SQL can create views in a database

2

SQL COMMANDS:

 SQL commands are instructions used to communicate with
the database to perform specific task that work with data.

 SQL commands can be used not only for searching the
database but also to perform various other functions like, for
example, you can create tables, add data to tables, or
modify data, drop the table, set permissions for users.

 SQL commands are grouped into 2 major categories
depending on their functionality:

Data Definition Language (DDL) - These SQL commands are
used for creating, modifying, and dropping the structure of
database objects. The commands are CREATE, ALTER, DROP,
RENAME, and TRUNCATE.

Data Manipulation Language (DML) - These SQL commands are
used for storing, retrieving, modifying, and deleting data. These
commands are SELECT, INSERT, UPDATE, and DELETE.

DATA DEFINITION LANGUAGE (DDL)
 DDL statements are used to build and modify the objects

and structure of tables in database.
 The DDL part of SQL permits database tables to be created

or deleted.
 It also defines indexes (keys), specifies links between tables,

and imposes constraints between tables.
 The most important DDL statements in SQL are:

 CREATE TABLE - creates a new table
 ALTER TABLE - modifies a table
 DROP TABLE - deletes a table
 CREATE INDEX - creates an index (search key)
 DROP INDEX - deletes an index

a. CREATE COMMAND
This statement used to create Database.
Syntax:

CREATE TABLE tablename
(

column_name data_type attributes…,
column_name data_type attributes…,
…

)
• Table and column names can’t have spaces or be “reserved

words” like TABLE, CREATE, etc.

3

Example:

CREATE TABLE Employee
(

EmpId varchar2(10),
FirstName char(20),
LastName char(20),
Designation char(20),
City char(20)

);
OUTPUT:

b. ALTER COMMAND:
 This statement is used to make modifications to the table

structure.
 This statement is also used to add, delete, or modify

columns in an existing table

Syntax:
ALTER TABLE table_name
ADD column_name datatype

OR
ALTER TABLE table_name
DROP COLUMN column_name

OR
ALTER TABLE table_name
MODIFY COLUMN column_name

Example:
ALTER TABLE Employee
ADD DateOfBirth date

OUTPUT:

EMP_Id FirstName LastName Designation City DateOfBirth
1 Raj Malhotra Manager Mumbai
2 Henna Setpal Executive Delhi

DROP COMMAND:

This statement is used to delete a table.

Emp_Id FirstName LastName Designation City

4

Syntax:
DROP TABLE table_name

Example:
DROP TABLE Employee

DATA MANIPULATION LANGUAGE (DML)

DML is set of commands used to,
 Insert data into table
 Delete data from table
 Update data of table.

EMP_Id FirstName LastName Designation City
1 Raj Malhotra Manager Mumbai
2 Henna Setpal Executive Delhi
3 Aishwarya Rai Trainee Indore

a. INSERT
The INSERT statement is used to insert a new row in a
table.

Syntax:
INSERT INTO table_name (column1, column2, column3,...)
VALUES (value1, value2, value3,...)

Example:
INSERT INTO Employee VALUES (4,'Nihar)
INSERT INTO Employee VALUES (5,'savita)
INSERT INTO Employee VALUES (6,'Diana)

OUTPUT:
Emp_Id FirstName
4 Nihar
5 Savita
6 Diana

b. DELETE
The DELETE statement is used to delete records in a table.

Syntax:
DELETE FROM table_name
WHERE some_column=some_value

5

Example:
EMP_Id FirstName LastName Designation City
1 Raj Malhotra Manager Mumbai
2 Henna Setpal Executive Delhi
3 Aishwarya Rai Trainee Indore

DELETE FROM Employee
WHERE LastName='Malhotra’ AND FirstName='Raj'

OUTPUT:
EMP_Id FirstName LastName Designation City
2 Henna Setpal Executive Delhi
3 Aishwarya Rai Trainee Indore

c. UPDATE
The UPDATE statement is used to update records in a table.

Syntax:
UPDATE table_name
SET column1=value, column2=value2,...
WHERE some_column=some_value

Example:
EMP_Id FirstName LastName Designation City
2 Henna Setpal Executive Delhi
3 Aishwarya Rai Trainee Indore
4 Nihar Sarkar

UPDATE Employee
SET Designation='CEO, City='Mumbai'
WHERE LastName='Sarkar’ AND FirstName='Nihar'

OUTPUT:
EMP_Id FirstName LastName Designation City
2 Henna Setpal Executive Delhi
3 Aishwarya Rai Trainee Indore
4 Nihar Sarkar CEO Mumbai

6

SQL BASIC QUERIES

a. SELECT CLAUSE
This statement is used for various attributes or columns of a table.
SELECT can have 2 options as SELECT ALL OR SELECT
DISTINCT, where SELECT ALL is default select all rows from table
and SELECT DISTINCT searches for distinct rows of outputs.

Syntax:
SELECT * FROM table_name

b. FROM CLAUSE
This clause is used to select a Relation/Table Name in a database.

c. WHERE CLAUSE
This clause is used to put a condition on a query result.

Example:
Ex1: SELECT * FROM Employee

Ex 2: To select only the distinct values from the column named
"City" from the table above.
SELECT DISTINCT City
FROM Employee
WHERE City=’Mumbai’

Output:

Aliases

 SQL Aliases are defined for columns and tables.
 Basically aliases are created to make the column selected

more readable.

Example:
To select the first name of all the students, the query would be like:

EmpID FirstName LastName Designation City
1 Raj Malhotra Manager Mumbai
2 Henna Setpal Executive Delhi
3 Aishwarya Rai Trainee Indore

EmpID FirstName LastName Designation City
1 Raj Malhotra Manager Mumbai

7

Aliases for columns:

SELECT FirstName AS Name FROM Employee;
or
SELECT FirstName Name FROM Employee;

In the above query, the column FirstName is given a alias as
'name'.
So when the result is displayed the column name appears as
'Name' instead of 'FirstName'.

Output:
Name
Raj
Henna
Aishwarya
Nihar

Aliases for tables:

SELECT e.FirstName FROM Employee e;

In the above query, alias 'e' is defined for the table Employee and
the column FirstName is selected from the table.

 Aliases is more useful when
 There are more than one tables involved in a query,
 Functions are used in the query,
 The column names are big or not readable,
 More than one columns are combined together

SQL ORDER BY

The ORDER BY clause is used in a SELECT statement to
sort results either in ascending or descending order. Oracle sorts
query results in ascending order by default.

Syntax

SELECT column-list
FROM table_name [WHERE condition]
[ORDER BY column1 [, column2, .. columnN] [DESC]];

8

Database table "Employee";

Example:

To select the entire Employee from the table above, however, we
want to sort the empoyee by their last name.

SELECT * FROM Employee
ORDER BY LastName

Output:

EmpID Name LastName Designation Salary City
1 Raj Malhotra Manager 56000 Mumbai
2 Henna Setpal Executive 25000 Delhi
3 Aishwarya Rai Trainee 20000 Indore

ORDER BY DESC Clause

Using ORDER BY clause of a SELECT statement.

Example:
To select all the Employee from the table above, however, we want
to sort the empoyee descending by their last name.

SELECT * FROM Employee
ORDER BY LastName DESC

OUTPUT:

EmpID Name LastName Designation Salary City
1 Raj Malhotra Manager 56000 Mumbai
2 Henna Setpal Executive 25000 Delhi
3 Aishwarya Rai Trainee 20000 Indore

EmpID Name LastName Designation Salary City
3 Aishwarya Rai Trainee 20000 Indore
2 Henna Setpal Executive 25000 Delhi
1 Raj Malhotra Manager 56000 Mumbai

9

AGGREGATE FUNCTIONS

SQL aggregate functions return a single value, calculated from
values in a column.

Aggregate functions in SQL are as follows:

 AVG() – This functions returns the average value
 COUNT() - This functions returns the number of rows
 MAX() - This functions returns the largest value
 MIN() - This functions returns the smallest value
 SUM() - This functions returns the sum

Example

AVG() Function
The AVG() function returns the average value of a numeric

column.

This function first calculates sum of column and then divide
by total number of rows.

Syntax:
SELECT AVG(column_name) FROM table_name

Example:
Find average Marks of Students from above table.

SELECT AVG(Marks) AS AvgMarks FROM Employees

The result-set will look like this:

AvgMarks
89.3

StudID Name Marks
1 Rahul 90
2 Savita 90
3 Diana 80
4 Heena 99
5 Jyotika 89
6 Rubi 88

10

COUNT() Function
The COUNT() function returns the number of rows that matches a
specified criteria.

Syntax:
SELECT COUNT(column_name) FROM table_name

Example
SELECT COUNT(StudID) AS Count FROM Students

Count
6

SUM() Function
The SUM() function returns the total sum of a numeric column.
Syntax
SELECT SUM(column_name) FROM table_name

Example

Find total of marks scored by students.

Select SUM (Marks) as Sum from Students

OutPut:

SUM
536

MIN() Function

The MIN() function returns the smallest value of the selected
column.

Syntax
SELECT MIN(column_name) FROM table_name

Example

Find minimum scored by students

Select MIN(Marks) as Min from Students

Min
80

11

MAX() Function

The MAX() function returns the largest value of the selected
column.

Syntax
SELECT MAX(column_name) FROM table_name

Example

Find maximum scored by students

Select MAX(Marks) as Max from Students

Max
90

NESTED SUB-QUERIES

 A query within a query is called Sub-Query.

 Subquery or Inner query or Nested query is a query in a query.

 Sub query in WHERE Clause (<>,, =, <>): It is used to select
some rows from main query.

 Sub query in HAVING Clause (IN/ANY/ALL): It is used to select
some groups from main querySubqueries can be used with the
following sql statements along with the comparison operators
like =, <, >, >=, <= etc.

SYNTAX:

SELECT select_Item
FROM table_name
WHERE expr_Operator(SELECT select_item
FROM Table_name)

Expression operator can be of 2 types:
1. Single Row Operator
2. Multiple-row Operator

Single Row Operator

A single-row subquery is one where the subquery returns
only one value. In such a subquery you must use a single-row
operator such as:

12

Operator Description
= Equal To
<> Not Equal To
> Greater Than
>= Greater Than Equal To
< Less Than
<= Less Than Equal To

The single-row operators are used to write single-row
subqueries. The table below demonstrates the use of the single-
row operators in writing single-row subqueries.

Operator Query Example

=

Retreive the details of
employees who get the
same salary as the
employee whose ID is
101.

SELECT * FROM EMPLOYEES
WHERE SALARY=(SELECT
SALARY FROM EMPLOYEES
WHERE EMPLOYEE_ID=101);

<>

Retreive the details of
departments that are not
located in the same
location ID as department
10.

SELECT * ROM DEPARTMENTS
WHERE LOCATION_ID
<>(SELECT LOCATION_ID

FROM DEPARTMENTS
WHERE EPARTMENT_ID=10);

>

Retrieve the details of
employees whose salary is
greater than the minimum
salary.

SELECT *FROM EMPLOYEES
WHERE SALARY > (SELECT
MIN(SALARY) FROM
EMPLOYEES);

>=

Retrieve the details of
employees who were hired
on or after the same date
that employee 201 was
hired.

SELECT * FROM EMPLOYEES
WHERE HIRE_DATE >=
(SELECT HIRE_DATE FROM
EMPLOYEES WHERE
EMPLOYEE_ID=201);

<

Retrieve the details of
employees whose salary is
less than the maximum
salary of employees in
department 20.

SELECT * FROM EMPLOYEES
WHERE SALARY < (SELECT

MAX(SALARY) FROM
EMPLOYEES WHERE
DEPARTMENT_ID=20);

<=

Retrieve the details of
employees who were hired
on or before the same
date that employee 201
were hired.

SELECT * FROM EMPLOYEES
WHERE HIRE_DATE
<=(SELECT HIRE_DATE
FROM EMPLOYEES

WHERE EMPLOYEE_ID=201);

13

A multiple row subquery is one where the subquery may
return more than one value. In such type of subquery, it is
necessary to use a multiple-row operator

The table below describes the multiple-row operators that
can be used when writing multiple-row subqueries:

Operator Meaning
IN Equal to any value returned by the subquery
ANY Compare value to each value returned by the subquery
ALL Compare value to every value returned by the subquery

The multiple-row operators are used to write multiple-row
subqueries. The table below demonstrates the use of the multiple-
row operators in writing multiple-row subqueries.

Operator Query Example

IN

Retreive the
department ID,
department name and
location ID of
departments that are
located in the same
location ID as a
location in the UK.

SELECT DEPARTMENT_ID,
DEPARTMENT_NAME,
LOCATION_ID
FROM DEPARTMENTS
WHERE LOCATION_ID IN
(SELECT LOCATION_ID FROM
LOCATIONS WHERE
COUNTRY_ID='UK')

>ALL
(Greater than
the maximum
returned by
the subquery)

Retrieve the first name
of employees whose
salary is greater than
the all the salaries of
employees belonging
to department 20.

SELECT FIRST_NAME
FROM EMPLOYEES
WHERE SALARY > ALL
(SELECT SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID=20)

<ALL
(Less than the
least value
returned by
the subquery)

Retrieve the first name
of employees whose
salary is less than all
the salaries of
employees belonging
to department 20.

SELECT FIRST_NAME
FROM EMPLOYEES
WHERE SALARY < ALL
(SELECT SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID=20)

>ANY
(Greater than
the minimum
value returned
by the
subquery)

Retrieve the first name
of employees whose
salary is greater than
the minimum salary of
employees in
department 60.

SELECT FIRST_NAME
FROM EMPLOYEES
WHERE SALARY > ANY
(SELECT SALARY FROM
EMPLOYEES WHERE
DEPARTMENT_ID=60)

14

<ANY
(Less than the
maximum
value returned
by the
subquery)

Retrieve the first name
of employees whose
salary is less than the
maximum salary of
employees in
department 60.

SELECT FIRST_NAME
FROM EMPLOYEES
WHERE SALARY < ANY
(SELECT SALARY
FROM EMPLOYEES WHERE
DEPARTMENT_ID=10)

EXISTS CLAUSE

 Exist Clause specifies a sub query to test for the existence of
rows.

 Their results type is in BOOLEAN format.
 It Returns TRUE if a sub query contains any rows

Example:

SELECT *
FROM suppliers
WHERE EXISTS

(select *
from orders
where suppliers.supplier_id = orders.supplier_id);

This select statement will return all records from the suppliers table
where there is at least one record in the orders table with the same
supplier_id.

NOT EXISTS CLAUSE

 The EXISTS condition can also be combined with the NOT
operator.

Example:

SELECT *
FROM suppliers
WHERE not exists (select * from orders Where
suppliers.supplier_id = orders.supplier_id);

This will return all records from the suppliers table where there are
no records in the orders table for the given supplier_id.

NULL VALUES

 NULL values represent missing unknown data.
 By default, a table column can hold NULL values.

15

 If a column in a table is optional, we can insert a new record
or update an existing record without adding a value to this
column. This means that the field will be saved with a NULL
value.

 NULL values are treated differently from other values.
 NULL is used as a placeholder for unknown or inapplicable

values.

"Employee" table:

EmpId FirstName LastName Address City
1 Hussain Lakdhwala Santacruz
2 Elie Sen Juhu

Road
Santacruz

3 Ranbir Kapoor Bhayander

Suppose that the "Address" column in the "Employee" table is
optional.

This means that if we insert a record with no value for the
"Address" column, the "Address" column will be saved with a NULL
value.

IS NULL VALUES

How do we select only the records with NULL values in the
"Address" column?
We will have to use the IS NULL operator:

SELECT FirstName, LastName, Address FROM Employee
WHERE Address IS NULL

Output:
FirstName LastName Address
Hussain Lakdhwala
Ranbir Kapoor

IS NOT NULL VALUES
How do we select only the records with no NULL values in the
"Address" column?
We will have to use the IS NOT NULL operator:

SELECT LastName,FirstName,Address FROM Empoyee
WHERE Address IS NOT NULL

16

Output:
FirstName LastName Address
Elie Sen Juhu Road

JOINS

 Joins are used to relate information in different tables.
 A Join condition is a part of the sql query that retrieves rows

from two or more tables.
 A SQL Join condition is used in the SQL WHERE Clause of

select, update, delete statements.

Syntax for joining two tables is:

SELECT col1, col2, col3...
FROM table_name1, table_name2
WHERE table_name1.col2 = table_name2.col1;

If a sql join condition is omitted or if it is invalid the join
operation will result in a Cartesian product. The Cartesian product
returns a number of rows equal to the product of all rows in all the
tables being joined.

Example:
If the first table has 20 rows and the second table has 10 rows, the
result will be 20 * 10, or 200 rows.
This query takes a long time to execute.

Let us use the below two tables to explain the sql join conditions.

Database table "product";

Product_id Product_name Supplier_name Unit_price

100 Camera Nikon 300

101 Television LG 100

102 Refrigerator Videocon 150

103 IPod Apple 75

104 Mobile Nokia 50

17

Database table "order_items";

order_id product_id total_units customer
5100 104 30 Infosys
5101 102 5 Satyam
5102 103 25 Wipro
5103 101 10 TCS

Joins can be classified into Equi join and Non Equi join.

1) SQL Equi joins
2) SQL Non equi joins

1) SQL Equi joins

 It is a simple sql join condition which uses the equal sign as the
comparison operator. Two types of equi joins are SQL Outer
join and SQL Inner join.

Example:
We can get Information about a customer who purchased a
product and the quantity of product.

An equi-join is classified into two categories:
a) SQL Inner Join
b) SQL Outer Join

a) SQL Inner Join:
All the rows returned by the sql query satisfy the sql join condition
specified.

Example:
To display the product information for each order the query will be
as given below.

Since retrieving the data from two tables, you need to identify the
common column between these two tables, which is the product_id.

QUERY:
SELECT order_id, product_name, unit_price, supplier_name,
total_units
FROM product, order_items
WHERE order_items.product_id = product.product_id;

18

The columns must be referenced by the table name in the
join condition, because product_id is a column in both the tables
and needs a way to be identified.

b) SQL Outer Join:
 Outer join condition returns all rows from both tables which

satisfy the join condition along with rows which do not satisfy
the join condition from one of the tables.

 The syntax differs for different RDBMS implementation.
 Few of them represent the join conditions as” LEFT OUTER

JOIN" and "RIGHT OUTER JOIN".

Example
Display all the product data along with order items data, with null
values displayed for order items if a product has no order item.

QUERY

SELECT p.product_id, p.product_name, o.order_id,
o.total_units
FROM order_items o, product p
WHERE o.product_id (+) = p.product_id;

Output:

Product_id product_name order_id total_units
100 Camera
101 Television 5103 10
102 Refrigerator 5101 5
103 IPod 5102 25

SQL Self Join:
A Self Join is a type of sql join which is used to join a table to

it, particularly when the table has a FOREIGN KEY that references
its own PRIMARY KEY.

It is necessary to ensure that the join statement defines an
alias for both copies of the table to avoid column ambiguity.

Example

SELECT a.sales_person_id, a.name, a.manager_id,
b.sales_person_id, b.name
FROM sales_person a, sales_person b
WHERE a.manager_id = b.sales_person_id;

19

2) SQL Non Equi Join:
A Non Equi Join is a SQL Join whose condition is

established using all comparison operators except the equal (=)
operator.
Like >=, <=, <, >

Example:
Find the names of students who are not studying either

Economics, the sql query would be like, (lets use Employee table
defined earlier.)

QUERY:

SELECT first_name, last_name, subject
FROM Employee
WHERE subject != 'Economics'

Output:

first_name last_name subject
Anajali Bhagwat Maths
Shekar Gowda Maths
Rahul Sharma Science
Stephen Fleming Science

TRIGGERS

A trigger is an operation that is executed when some kind of
event occurs to the database. It can be a data or object change.

Creation of Triggers

 Triggers are created with the CREATE TRIGGER statement.

 This statement specifies that the on which table trigger is
defined and on which events trigger will be invoked.

 To drop Trigger one can use DROP TRIGGER statement.

Syntax:

CREATE TRIGGER [owner.]trigger_name
ON[owner.] table_name
FOR[INSERT/UPDATE/DELETE] AS
IF UPDATE(column_name)
[{AND/OR} UPDATE(COLUMN_NAME)...]
{ sql_statements }

20

Triggers Types:

a. Row level Triggers
b. Statement Level Triggers

a. Row Level triggers-
A row level trigger is fired each time the table is affected by
the triggering statement.

Example:
 If an UPDATE statement updates multiple rows of a table, a

row trigger s fired once for each row affected by the update
statement.

 A row trigger will not run, if a triggering statement affects no
rows.

 If FOR EACH ROW clause is written that means trigger is
row level trigger.

b. Statement Level Triggers
A statement level trigger is fired once on behalf of the
triggering statement, regardless of the number of rows in the
table that the triggering statement affects, even If no rows
are affected.

Example:
 If a DELETE statement deletes several rows from a table, a

statement level DELETE trigger is fired only once.
 Default when FOR EACH ROW clause is not written in

trigger that means trigger is statement level trigger

Rules of Triggers

 Triggers cannot create or modify Database objects using
triggers

o For example, cannot perform “CREATE TABLE… or
ALTER TABLE” sql statements under the triggers

 It cannot perform any administrative tasks
o For example, cannot perform “BACKUP

DATABASE…” task under the triggers
 It cannot pass any kind of parameters
 It cannot directly call triggers
 WRITETEXT statements do not allow a trigger

Advantages of Triggers:-

Triggers are useful for auditing data changes or auditing
database as well as managing business rules.

21

Below are some examples:

 Triggers can be used to enforce referential integrity (For
example you may not be able to apply foreign keys)

 Can access both new values and old values in the database
when going to do any insert, update or delete

Disadvantages of Triggers

 Triggers hide database operations.
 For example when debugging a stored procedure, it’s

possible to not be aware that a trigger is on a table being
checked for data changes

 Executing triggers can affect the performance of a bulk
import operation .

Solution for Best Programming Practice

 Do not use triggers unnecessarily, if using triggers use them
to resolve a specific situation

 Where possible, replace a trigger operation with a stored
procedure or another kind of operation

 Do not write lengthy triggers as they can increase
transaction duration; and also reduce the performance of
data insert, update and delete operations as the trigger is
fired every time the operation occurs.

13
TRANSACTION MANAGEMENT

Unit Structure
13.0 Objectives
13.1 Introduction

TRANSACTION
 A transaction is a logical unit of work that contains one or more

SQL statements. A transaction is an atomic unit. The effects of
all the SQL statements in a transaction can be either all
committed (applied to the database) or all rolled back (undone
from the database).

 A transaction begins with the first executable SQL statement.

 A transaction ends when it is committed or rolled back, either
explicitly with a COMMIT or ROLLBACK statement or implicitly
when a DDL statement is issued.

 To illustrate the concept of a transaction, consider a banking
database. When a bank customer transfers money from a
savings account to a checking account, the transaction can
consist of three separate operation:

i. Decrement the savings account
ii. Increment the checking account
iii. Record the transaction in the transaction journal

EXAMPLE:
To illustrate Banking transaction:

2

PROPERTIES OF TRANSACTION:

Four properties of Transaction: (ACID PROPERTIES)
1. Atomicity= all changes are made (commit), or none

(rollback).
2. Consistency = transaction won't violate declared system

integrity constraints
3. Isolation= results independent of concurrent transactions.
4. Durability= committed changes survive various classes of

hardware failure

ATOMICITY

 All-or-nothing, no partial results.

 An event either happens and is committed or fails and is
rolled back.

 EXAMPLE: In a money transfer, debit one account, credit
the other. Either both debiting and crediting.

 If a transaction ends, we say its commits, otherwise it aborts

3

 Transactions can be incomplete for three reasons:
1. It can be aborted by the DBMS,
2. A system crash.
3. The transaction aborts itself.

 When a transaction does not commit, its partial effects should
be undone

 Users can then forget about dealing with incomplete
transactions

 But if it is committed it should be durable

 The DBMS uses a log to ensure that incomplete transactions
can be undone, if necessary.

CONSISTENCY

 If the database is in a consistent state before the execution
of the transaction, the database remains consistent after the
execution of the transaction.

Example:

Transaction T1 transfers $100 from Account A to Account B. Both
Account A and Account B contains $500 each before the
transaction.

Transaction T1
Read (A)
A=A-100
Write (A)
Read (B)
B=B+10

Consistency Constraint

Before Transaction execution Sum = A + B
Sum = 500 + 500
Sum = 1000

After Transaction execution Sum = A + B
Sum = 400 + 600
Sum = 1000

Before the execution of transaction and after the execution
of transaction SUM must be equal.

4

ISOLATION

 Isolation requires that multiple transactions occurring at the
same time not impact each other’s execution.

 Example, if Joe issues a transaction against a database at
the same time that Mary issues a different transaction; both
transactions should operate on the database in an isolated
manner.

 The database should either perform Joe’s entire transaction
before executing Mary’s or vice-versa.

 This prevents Joe’s transaction from reading intermediate
data produced as a side effect of part of Mary’s transaction
that will not eventually be committed to the database.

 Note that the isolation property does not ensure which
transaction will execute first, merely that they will not
interfere with each other.

DURABILITY

 Durability ensures that any transaction committed to the
database will not be lost.

 Durability is ensured through the use of database backups
and transaction logs that facilitate the restoration of
committed transactions in spite of any subsequent software
or hardware failures.

TRANSACTION STATE DIAGRAM

The following are the different states in transaction
processing in a Database System.

1. Active
2. Partially Committed
3. Failed
4. Aborted
5. Committed

5

1. Active
This is the initial state. The transaction stay in this state while it
is executing.

2. Partially Committed
This is the state after the final statement of the transaction is
executed.

3. Failed
After the discovery that normal execution can no longer
proceed.

4. Aborted
The state after the transaction has been rolled back and the
database has been restored to its state prior to the start of the
transaction.

5. Committed
The state after successful completion of the transaction.
We cannot abort or rollback a committed transaction.

TRANSACTION SCHEDULE

When multiple transactions are executing concurrently, then
the order of execution of operations from the various transactions is
known as schedule.
Serial Schedule
Non-Serial Schedule

6

Serial Schedule
Transactions are executed one by one without any

interleaved operations from other transactions.

Non-Serial Schedule
A schedule where the operations from a set of concurrent

transactions are interleaved.

SERIALIZABILITY

What is Serializability?
A given non serial schedule of n transactions is serializable if it is
equivalent to some serial schedule.

i.e. this non serial schedule produce the same result as of the
serial schedule. Then the given non serial schedule is said to be
serializable.

A schedule that is not serializable is called a non-serializable.

Non-Serial Schedule Classification
Serializable
Not Serializable
Recoverable
Non Recoverable

Serializable Schedule Classification
Conflict Serializable
View Serializable

Conflict Serializable Schedule
If a schedule S can be transformed into a schedule S’ by a

series of swaps of non conflicting instruction then we say that S and
S’ are conflict equivalent.

A schedule S is called conflict serializable if it is conflict
equivalent to a serial schedule.

View Serializable Schedule
All conflict serializable schedule are view serializable.

But there are view serializable schedule that are not conflict
serializable.

A schedule S is a view serializable if it is view equivalent to a serial
schedule.

7

Recoverable Schedule Classification
Cascade
Cascadeless

To recover from the failure of a transaction Ti, we may have to
rollback several transactions.

This phenomenon in which a single transaction failure leads to a
series of transaction roll back is called cascading roll back.

Avoid cascading roll back by not allowing reading uncommitted
data.

But this lead to a serial schedule.

