F.F. (Sem-F) CBCGS - BEF / 20-12-2016 Basic Electrical Engineering

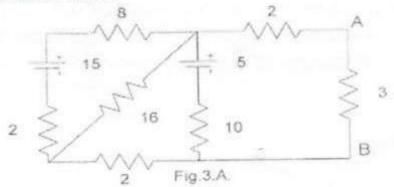
Q.P. Code: 803301

[Total Marks: 80

N.B.: (1) Question No.1 is compulsory.

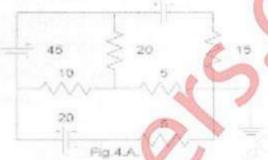
(2) Answer any THREE questions from remaining five questions.

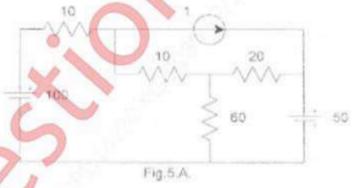
(3 Hours)


(3) Figures to right indicate full marks.

(4) Assume suitable data if required.

- A) State Maximum Power Transfer Theorem B) Derive the formula to convert a delta circuit into an equivalent star C) Define Average value and RMS value of an alternating quantity D) Prove that power in a 3-phase delta connected system is 3 times that of a star connected system. Explain the working principle of a single phase transformer. What is the use of commutator in a DC machine. 2 F)
- A) Obtain current through 1Ω resistance by using Super position theorem, in 10 fig 2.A.


- B) A coil is connected across a non-inductive resistance of 120 Ω . When a 240 V, 50 Hz supply is applied to this circuit the coil draws a current 5 A and total current is 6 A. Determine the power and power factor of
 - i) the coil
 - ii) the whole circuit
- Obtain Norton's equivalent circuit of the network shown in fig. 3.A, across 10 the terminals A and B


- B) A series RLC circuit, if ω_0 is the resonant frequency, ω_1 and ω_2 are the half 5 power frequencies, prove that $\omega_0 = \sqrt{(\omega_1 \ \omega_2)}$
- C) Derive the equivalent circuit of a 1-phase transformer.

5

A) Obtain current through 15 Ω resistance by nodal analysis in fig.4.A. Take 19 reference node as marked.

- B) In a balanced 3 phase, star connected system, a wattmeter is connected 10 with its current coil in series with Y line and pressure coil between Y and R lines. Draw a neat circuit digram showing the above watmeter connection. Assuming a lagging power factor, draw the corresponding phasor diagram and derive the watmeter reading in terms of line voltage, line current and phase angle.
- A) Obtain current through 60 Ω resistance by Mesh analysis in fig.5.A.

- B) Develope the phasor diagram of a single transformer supplying to a resistive load.
- C) Derive the emf equation of a DC generator.

6

6. A) A resistor and a pure reactance are connected in series across a 150 V ac supply. When the frequency is 40 Hz, the circuit draws 5 A. When the frequency is increased to 50 Hz, the circuit draws 6 A. Find the value of resistance and the element value of the reactance. Also find the power drawn in the second case.

B) A single phase 10 KV A, 500 V/250 V, 50 Hz transformer has the following 10 constants.

Resistance : primary = 0.2 ohms, secondary = 0.5 ohms Reactance : primary = 0.4 ohms, secondary = 0.1 ohms

Resistance of equivalent exciting circuit w.r.t. primary = 1500 ohms

Reactance of equivalent exciting circuit w.r.t. primary = 750 ohms

What will be the reading of the instruments placed in primary side when the transformer is connected for OC and SC tests?
