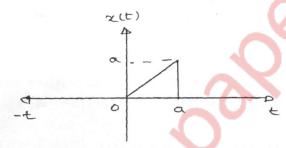
Q.P. Code: 40395

[Time: 3 Hours]

[Marks: 80]

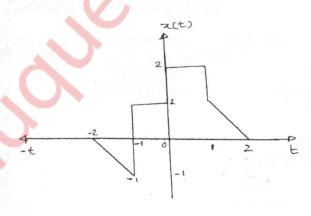
20


Please check whether you have got the right question paper.

N.B: 1. Question No 1. Is compulsory.

- 2. Attempt any three questions from remaining five questions.
- 3. Assume suitable data if necessary and state it clearly.
- 4. Figures to right indicate full marks.

- 1. Answer any four questions from given questions.
 - (a) Explain any five types of elementary signals with mathematical equations and graphical plot.
 - (b) Find the fundamental period of the signal $x(t) = \sin\left(\frac{2\pi t}{6}\right) \cos \pi t$
 - (c) Explain the application of Signals and System in Multimedia Processing.
 - (d) Find x(-2t) and x(3t + 2)



(e) Test the given system for linearity, causality, stability, memory and time variant.

$$y = x(t^2)$$

- (f) If system matrix find the sate transition matrix. $A = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}$
- 2. (a) Sketch the following signals for the given signal shown.

a)
$$x(-t)$$
 b) $x(2t + 5)$ c) $x(2t)$ d) $x(t/2)$ e) $-2x(t)$

10

Turn Over

08

04

06

- (b) Using unilateral Laplace transform find the output of the system given by: where and 10 $\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y(t) = x(t) \text{ where } x(t) = e^{-4t} \text{ u(t) & } y(0^-) = 1, \frac{dy}{dt}\Big|_{t=0^-} = 1 \frac{d^2y}{dt^2}\Big|_{t=0^-} = 1$
- 10 (a) Find inverse Z-Transform of X(z), $X(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}}$
 - (b) Given DT sequence: 10 $x(n) = 0.4\delta(n+2) + 0.2\delta(n+1) + 0.1\delta(n) + 0.2\delta(n-1) + 0.4\delta(n-2)$ Determine the following:
 - i. Xe^{jw} ii. $|Xe^{jw}|$ iii. Phase $\{X(e^{jw})\}$ iv. $\int_{0}^{2\pi} |X(e^{jw})|^{2} dw$
- 4. (a) Determine the state model of the governed by the equation. 10 y[n] = -2y[n-1] + 3y[n-2] + 0.5y[n-3] + 2x[n] + 1.5x[n] + 1.5x[n-1] + 2.5x[n-2] + 4x[n-3]
 - (b) Find the Fourier transform of 10 $x(t) = \begin{cases} \cos \pi t & -\frac{1}{2} \le t \le \frac{1}{2} \\ 0 & otherwise \end{cases}$ i. From the definition of Fourier transform
 - ii. Using the convolution theorem of Fourier transform

ii. Find the Z Transform of signal $\cos(\omega_0 n) u[n]$

(b) Explain the concept ROC in Z-Transform and Laplace Transform.

- 5. (a) Determine DTFS for the sequence $x(n) = \cos^2((\pi/8)n)$ 04 (b) i. Find Laplace transform of. $\frac{d}{dt} \sin t \ u(t)$
 - (c) Find the canonic (direct form II) realization of $H(z) = \frac{1 \frac{7}{4}z^{-1} \frac{1}{2}z^{-2}}{1 + \frac{1}{4}z^{-1} \frac{1}{6}z^{-2}}$ 04
- **6.** (a) Find the autocorrelation function $R_{xx}(\tau)$ of sine wave signal. 08
 - (c) Discuss applications of Signals in Control System. 06